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Introduction

Deep learning for time series forecasting

Modern deep learning forecasting methods rely on a single neural network trained on a collection of

related time series.
History Predictions

© Each time series is processed independently. O ~—0""—o—— —[WN _J— oo _ o

(© Parameters are shared.
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© Effective and sample efficient.

® Dependencies are neglected. 0 —AS AN, ~[W )= « s

[1] Salinas et al., “DeepAR: Probabilistic forecasting with autoregressive recurrent networks”, 1JF 2020.
[2] Benidis et al., “Deep Learning for Time Series Forecasting: Tutorial and Literature Survey”, ACM CS 2022.



Introduction

Graph deep learning for time series forecasting

We will show graph deep learning (GDL) provides appropriate operators to go beyond these limitations.

History Predictions

~—o—""" “o-"o,_,6 0

© Dependencies are embedded into the e~ A ooy o
processing as inductive biases. | L
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© Operate on sets of correlated time series. X N N o0
o N\ O

© Parameters are shared. PV avi /A\m o0y v

time

@ There are inherent challenges in applying this processing to data from the real world.



Introduction

What this tutorial is about

This tutorial presents advances coming from the combination of ~—" Y,
o A\ b

1. deep learning for time series and W
e N\ b

2. deep learning on graphs. '\/\/f\

The objective of this short tutorial is to provide:

1. aframework for graph-based time series processing models;
2. adiscussion of selected challenges and future directions.

Thereis a longer version of this tutorial’, complemented by a software demo and a paper [3].

[3] Cini, Marisca, Zambon, and Alippi, “Graph Deep Learning for Time Series Forecasting”, Preprint 2023.
Available at gmlg. ch
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Part1

Graph-based Processing
of Correlated Time series



Correlated time series



Correlated time series

Collections of time series

We consider a set D of N correlated time series. Each i-th time series can be associated with:

. observations z! € R% at each time step t;
- exogenous variables ui € R% at each time step ¢;
« avector of static (time-independent) attributes v* ¢ R%.

X X1 U, Uiir
o NN AN ’ ;

}
ti;nellltllllllt*l’T m;’leuuutuuuuut‘;_Tu

Static attributes

Target time series
Exogenous variables

Capital letters denote the stacked N time series, i.e., X, € RN X% 7, RN *du,
— We call spatial the dimension spanning the collection.

[3] Cinietal., “Graph Deep Learning for Time Series Forecasting”, Preprint 2023.




Correlated time series

Correlated time series

We consider a time-invariant stochastic process generating each time series as
@i~ p (mi}X<t,U§t,V) foralli=1...N,t=0,...,T — 1

and assume the existence of a causality a la Granger among time series.

Furthermore time series

Notation:
Xf = <Xf7 Ut7 V)

X<t = [X07 e 7Xt*25 thll

« are assumed
a) homogenous, b) synchronous, c) regularly sampled.

+ can be generated by different processes.

I Assumptions a),b),c) can be relaxed as we will discuss in the 2nd part.




Correlated time series

Example: Traffic monitoring system

Consider a sensor network monitoring the speed of vehicles at crossroads.

time

+ X -, collects past traffic speed measurements.
+ U, stores identifiers for time-of-the-day and day-of-the-week.

+ V collects static sensor’s features, e.g., type or number of lanes of the monitored road.

— Strong dependencies among time series that reflect the road network.
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Forecasting

Time series forecasting

Multi-step time-series forecasting

|
Given a window of W > 1 past values \m 2;’::
X—wi = [Xe-w, ..., Xea], RN N °“‘\‘5'"\o'-“‘o
predict H > 1 future observations ERATAN *a 0T
Xitn h=1,...,H. ‘W L W
umet -w t t+H

In particular, we are interested in learning a parametric model 7 ( - ; ) s.t.
F(Xi—wt,Uptrm; 0) = Xivin ~ E, [ XeitmH].

Probabilistic predictors can be considered as well, but we focus on point forecasts.



Forecasting

Global and local predictors

Local models

" /’O\/o\
foi o' & “o_.0
/NI fo- T 070
NSO R N g |0 P8
@hin = (@iwas.:0')
Example: Box-Jenkins method
© Tailored to each time series.
@ Inefficient.

Global models

Mﬁ’l\b"o‘IO\‘ONn
Wb—fo-\o/"}\/o"o
o IR o fy 0T PP e
@hin = (@hwar10)
Example: DeepAR [1]
© Sample efficient.

© Allows for more complex models.

@® Both approaches neglect dependencies among time series.

[1] Salinas et al., “DeepAR: Probabilistic forecasting with autoregressive recurrent networks”, IJF 2020.
[4] Montero-Manso et al., “Principles and algorithms for forecasting groups of time series: Locality and globality”, IJF 2021.



Forecasting

Accounting for spatial dependencies

+ One option is to consider the input as single multivariate time series
— Resulting predictors are local: )/(\H-h =f(Xi—wt,...;0).
® High sample complexity and poor scalability.
+ Models operating on sets of time series would allow to keep parameters shared.
— Resulting predictors are global: )/E;Z_h =F (Xffw:t, . 9) , VS CD
(© Can beimplemented by attention-based models (e.g, Transformers).
@ Does not exploit structural priors, high computational and sample complexity.
« Other methods (e.g., [5]) rely on dimensionality reduction to extract shared latent factors.

© Might work well if data are low-rank.
© Local and relational information are lost and can still suffer from, scalability issues.

[2] Benidis et al., “Deep Learning for Time Series Forecasting: Tutorial and Literature Survey”, ACM CS 2022.
[5] Senetal., “Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting”, NeurlPS 2019.
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Graph-based representation

Relational information

Q@ Exploit functional dependencies as an inductive bias to improve
the forecasts.

We can model pairwise relationships existing at time step ¢ with
adjacency matrix A; € {0, 1}V,
« A; can be asymmetric and dynamic (can vary with ¢).

NN

A,

time

00000

00000
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Graph-based representation

Relational information with attributes

Optional edge attributes e/’ € R% can be associated to each non-zero entry of A..
The set of attributed edges is denoted by °
A= o &=
. .. i .. .. )
E={{(i,7),e) | Vi, j: Aili, 7] # 0} °

— Edge attributes can be both categorical or numerical.

= BHEEEE

383833
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Graph-based representation

Example: Traffic monitoring system

Consider again the sensor network of the previous example.

time — S = =3

« Edgesin £ can be obtained by considering the road network.
— Road closures and traffic diversions can be accounted for with a dynamic topology &;.

13



Graph-based representation

Graph-based representations for correlated time series

Typically static

-

7 Nodes (sensors) +=-==n==n=s-=moos L Target variables - --==-===--==-==--

- Edges (functional dependencies)

00000

O 0 0O0O0

time t t+T
- Exogenous variables --------------,
U, Upir
"""""""""""""""""" ; o ¢ |
P o
Pommme  |EBEe| i PO
fv-Ce O
S 7 o & = :
BEEg t Girty ={Gt1s-- 1 Gtr -, Gt} ‘o
time t t+T

Gi = (X, Uy, &, V') contains the available information w.r.t. time step ¢.

[3] Cinietal., “Graph Deep Learning for Time Series Forecasting”, Preprint 2023.

SOLIOS oW ]
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Graph-based representation

Relational inductive biases for time series forecasting

Forecasts can be conditioned on the available relational

information &_w .. — o —
=5 s S Gi-w Xioin
Xiryag =F (gtf‘xv:uUt:thH; 0) vSeD I
~o—o— Yoy o0 STO
The conditioning can act as a regularization to localize -0 N\ g b"'"‘l._—"’
predictions w.r.t. each node. AaWe WA ZANRVE I
N - W LV N
© Relational priors prune spurious correlations. W\’ . o
0" &y
© More scalable than standard multivariate models. time
t—w  t  t+H

© Can forecast any subset of correlated time series.

15



Graph-based representation

Spatiotemporal graph neural networks

We call spatiotemporal graph neural networks (STGNNs) a neural network exploiting both temporal and
spatial relations of the input spatiotemporal time series.

Predictions

time

We focus on models based on message passing (MP).

16



Graph-based representation

A general recipe for building STGNNs

We consider STGNNSs consisting of three main components

History Predictions
O - R -
‘G—Ao o b, 40
i A Y o ®-"q_.,0

o, FAIEEN
R LN - o
NV - VX o"'.‘o.,"—ouﬂb
—\/\f.\ ° "‘Q_, ® ,~©

time :
« ENnc( - ) isthe encoding layer, e.g.,implemented by an MLP.
« STMP( -) is a stack of spatiotemporal message-passing (STMP) layers.
+ DeC( - ) isthe readout layer, e.g., implemented by an MLP.

[3] Cini et al., “Graph Deep Learning for Time Series Forecasting”, Preprint 2023.
17



Graph-based representation

Spatiotemporal message-passing (STMP)

STMP blocks can be defined as:

i1 l il Lipid g0 _ji
it = up (hgt,jéje\[(t;(Ri){MSG (hgt,hjgt,eét)}>

Each block processes sequences while accounting for relational dependencies.

As in standard MP operators:

. MsG'( - ) is a message function, e.g., implemented by temporal convolutional layers.

+ AGGR{ - } is a permutation invariant aggregation function.
« UP'(-)is an update function, e.g., implemented by an RNN.

! Blocks can be implemented by composing MP and sequence modeling operators.
— Many possible designs exist.

[3] Cinietal., “Graph Deep Learning for Time Series Forecasting”, Preprint 2023.
[6] Gilmer et al., “Neural message passing for quantum chemistry”, ICML 2017.

18



Globality and locality in
STGNNs



Globality and locality in STGNNs

Globality and locality in STGNNs

Standard STGNNs are global models.

© Canhandle arbitrary node sets. @ Might struggle with local effects.

© Neighbors provide further conditioningonthe ~ @ Might need long windows and high model
predictions. capacity.

© Use hybrid global-local STGNNs.

19



Globality and locality in STGNNs

Global-local STGNNs

o By

© We can turn some global components of the architecture into local.

© Resulting models can capture local effects.

® Might require a large number of local parameters.

20




Globality and locality in STGNNs

Global-local STGNNs with node embeddings

3
-*,:e STVP

.° 3, _..
% DEC j7
r—

STMP

Node embeddings can amortize the learning of local components.

Node embeddings are a table of learnable parameters Q € R™* % associated with each node.

© Most of the model’s parameters remain shared.

© Can facilitate transfer learning.
(© Number of parameters scales linearly with the number of time series . ..
— One might consider intermediate solutions, e.g., learning embeddings for clusters of time series.

[7] Cini et al., “Taming Local Effects in Graph-based Spatiotemporal Forecasting”, NeurlPS 2023.

21



What we have seen so far

1. Introduced the problem of processing correlated time series.

2. Graph representations allows for modeling dependencies.

3. Discussed the forecasting problem and associated predictors. ~—" o,

4. Saw recipes for building (global/local) STGNNs. o NS
RV LN
N Y- "

In the following, we will look into A~

« dealing with partial observations;
« latent graph learning;

« aselection of future directions.

Checkout the full tutorial for more on: computational scalability, model quality assessment, software
libraries, . ..

22



Part 2

Challenges



Dealing with missing data



Dealing with missing data

The problem of missing data

So far, we assumed to deal with complete sequences.
- i.e., to have valid observations associated with each node (sensor) and time step.

However, time series collected by real-world sensor networks often have missing data, due to:

« faults, of either transient or permanent nature;
« asynchronicity among the time series;

« communication errors...

Most forecasting methods operate on complete sequences.
— We need a way to impute, i.e., reconstruct, missing data.

23



Dealing with missing data

Time series imputation

Time series imputation (TSI)

Given a window of observations X.:+1, mask My..+r, and covariates U,.., the goal is to estimate
the missing observations in the sequence X ;. 7.

Xt:t+T Mt:i+T Ut:tJrT Yt:t+T
O ° W ° - - ¢ W °
0) M /v/‘\/\/\
O et 0 . LU0 Zan N/‘\./ L
Q o° W r'_'_'_'_'_' ) e W
ouo ._._L._._._._T_. .oo
© v S time time i ad o time
t t+T ¢ t+T t t4+T

— We use amask m; ¢ {0, 1} to distinguish between missing (0) and valid (1) observations.

24



Dealing with missing data

Missing data types

We can categorize missing data patterns according to the conditional distribution p (mé | Mgt).

+ Point missing
p (m} = 0) is the same across nodes and time steps, i.e., RVs associated to each m are iid.

P (mi) =B(n) Vit

+ Block missing
P (mi = 0) is not independent from missing data at other nodes and/or time steps.

Temporal block missing  p (mi|mi_,) # p (m})
Spatial block missing  p (m,’; | {m] }j#) #p(m})
Spatiotemporal block missing  p (mi | mi_, {m{}#i) #p(m})

25



Dealing with missing data

Optimization

Parameters @ can be learned by minimizing a loss function £( -, - ) on valid observations in a training set:

—argmmZZHthF &}, x} H1 — eg,l= (& fa:t)2

= = Imilly

For imputation, we mark some valid observations as missing with mask m; to obtain ground-truth labels:

mt @Z wt,mt H1

= arg mlnz Z

t=1 i=1 tH1

A\ Datawhere ! = 1 must not be used in the model to obtain the imputations.

26



Dealing with missing data

Deep learning for TSI

Besides standard statistical methods, deep learning approaches have become a popular alternative.
- In particular, autoregressive models (e.g., RNNs).

TNV TNy Ty Ty & (@, &, m0)

[T I
L1 Tiy2 L1143

© Effective in exploiting past (and future, with bidirectional models) node observations.

® Struggle in capturing nonlinear space-time dependencies.

27



Dealing with missing data

Time series imputation + relational inductive biases

Again, we can use the available relational information to condition the model, i.e.,

Tip ~p (miﬂe | Xit41 © My, A)

gt:t+T

Imputation
—]
STGNN

kel0,T)

Xt:t+T

28



Dealing with missing data

Graph Recurrent Imputation Network (GRIN)

Similarly to GCRNN for forecasting, we can integrate graph processing into the autoregressive approach for
imputation [8].

In these approaches, the distribution p (cci | X0:00 © Mo;oo) is modeled into three independent steps:

Information from Information from Information from related
previous observations. subsequent observations. concurrent observations.
p($i|X<t®M<t) P(wi|X>t®M>t :ct| {wt th}#l)

Typically modeled by bidirectional autoregressive models. Enabled by message passing.

[8] Cinietal., “Filling the G_ap_s: Multivariate Time Series Imputation by Graph Neural Networks”, ICLR 2022.

29



Dealing with missing data

Imputation before forecasting

TSl is often used as a preprocessing step for a downstream task, e.g., forecasting.

gt7W:t Yth:t Xt:t+H
R WA AN LW
S A S A Wata
——T - Imputation —~—NT - Forecasting T
oo N STGNN T STGNN VAN

RS o VAS AN o

time time time
!

W t W t +H

o~
B

® Often necessary to use standard forecasting methods with irregular time series.

© Might introduce biases due to errors in estimated values.




Dealing with missing data

Imputation in place of forecasting

Imputation methods can also be adapted to perform forecasting.

Yt:t«I»H
o/v
N
Imputation
STGNN .

SN

ime
—t
t t+H

@ Itis aworkaround (this is not their purpose).
® Might perform poorly due to the absence of values in the forecasting horizon.

31



Dealing with missing data

Forecasting from partial observations

A more direct approach: avoid the reconstruction step!
— Design forecasting architecture to directly deal with irregular observations.

Benefits Gr-wt Xt H
/'v
© Learn how to leverage only valid A
observations specifically for the
task at hand P Y Forecasting M
) .
STGNN
© Avoid the computational burden » ‘ SN
of imputing missing values. ’= : e
t-Ww t t t+H

[9] Zhang et al., “Graph-guided network for irregularly sampled multivariate time series”, ICLR 2022.
[10] Zhonget al., “Heterogeneous spatio-temporal graph convolution network for traffic forecasting with missing values”, IEEE ICDCS 2021.
[11] Marisca et al., “Graph-based Forecasting with Missing Data through Spatiotemporal Downsampling”, ICML 2024.

32



Dealing with missing data

Virtual sensing

The practice of estimating unmeasured states using models and existing observations.

The power of graphs:

© The relational processing allows us to condition
estimates on data close in space.

© Theinductive property of MP allows us to

handle new nodes and edges. NN

© Useful in applications where sensing has a cost.

time

[12] Wu et al., “Inductive Graph Neural Networks for Spatiotemporal Kriging”, AAAI 2021.
[13] De Felice et al., “Graph-Based Virtual Sensing from Sparse and Partial Multivariate Observations”, ICLR 2024.

33



Dealing with missing data

Graph imputation for virtual sensing

© Add afictitious node with no data and let the model infer the corresponding time series.

Two virtual sensors for air quality. (from [8])
==== Truth —— GRIN

o

)
=3
S

Clearly, several assumptions are needed

no. 1014

» high degree of homogeneity of sensors,

PM2.5 (ug/m?)
=
(=]

« capability to reconstruct from observations at
neighboring sensors,

S o
3 3

« and many more...

PM2.5 (ug/m?)
wn
(=]

Jun—19 12:00 Jun—20 12:00
2014—Jun—20

[8] Cinietal., “Filling the G_ap_s: Multivariate Time Series Imputation by Graph Neural Networks”, ICLR 2022.
[14] Marisca et al., “Learning to Reconstruct Missing Data from Spatiotemporal Graphs with Sparse Observations”, Neur|PS 2022.
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Latent graph learning




Latent graph learning

Learning an adjacency matrix

@ Relational information is not always (or only partially) available,
® or might be ineffective in capturing spatial dynamics.

© Relational architectural biases can nonetheless be exploited
— extract a graph from the time series or node attributes

X<: A

© SN X
O - "’ .
e O/\/W .. ——| Graph extraction ]— }b

+ When possible, the learned graph should be sparse.
» It can be interpreted as regularizing a spatial attention operator.
« This task is found under different names:
graph structure learning, latent graph learning, graph inference...

35



Latent graph learning

Time-series similarities

Probably, the simplest approach to extract a graph from the time series
is by computing time series similarity scores.

00000

» Pearson correlation

 Correntropy

+ Granger causality

« Kernels for time series

— Thresholding might be necessary to obtain binary and sparse graphs.

00000

36



Latent graph learning

Inferring latent structures from time series

Model the graph as a latent variable determining the realizations of the time series.

+ They rely on assumptions, such as of signal smoothness and of a diffusion process.

Dedicated loss functions are formulated and minimized, e.g.,

1
trace(X ' LX) = 3 Do AulIX - X3
i

constraining L (or A) to be a Laplacian (adjacency matrix) and promoting sparsity.

— These approaches are commonly derived from a graph signal processing point of view.

[15] Dong et al., “Learning Laplacian matrix in smooth graph signal representations”, IEEE TSP 2016.
[16] Mateos et al., “Connecting the dots: Identifying network structure via graph signal processing”, IEEE SP Mag 2019.

37



Latent graph learning

Task-oriented latent graph learning

An integrated approach: learn the relations end-to-end with the downstream task
— e.g., by minimizing the forecasting error (MAE, MSE...).

Two different formulations:
1. learning directly an adjacency matrix A € RV *%;
2. learning a probability distribution over graphs ps generating A (often € {0, 1}V <),

A One key challenge is keeping both A and the subsequent computations sparse.
— non-trivial with gradient-based optimization.

38



Latent graph learning

Direct approach

A direct approach consists in learning A as function &(-) of edge scores
O e RVXN as

A=¢(D)
Edge scores @
+ can be atable of learnable model parameters,

« obtained as a function of the inputs and/or other parameters:

d=d(X,d).

Function &( - ) can enforce structures on A, like,

— make}ibinary, a k-NN graph, atree...

00000

00000

Q0000

b
Il
00000
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Latent graph learning

Edge score factorization

The number of possible edge scores is quadratic in the number of nodes (& € RV * %)
— acommon approach is to factorize ®:

A—g(®) Q:ZSZtT 00000

with

oA
I
00000
|
00000

.« Z, € RV*4source node embeddings

« Z; € RV *?target node embeddings

Z s and Z; can be learned as tables of (local) parameters or as a function of the input window.

[17] Wu et al., “Graph wavenet for deep spatial-temporal graph modeling”, [JCAI 2019.

40



Latent graph learning

Pro & Cons of the direct approach

© Easy to implement.
© Many possible parametrizations.

(© Edge scores are usually easy to learn end-to-end.

® Itoften results in dense computations with O(N?) complexity.

© Sparsifying A results in sparse gradients.

® Encoding prior structural information requires smart parametrizations.

41



Latent graph learning

Probabilistic methods

In this context, probabilistic methods aim at learning a parametric distribution ps for A.

« Different parametrizations of p allow for embedding graph structural priors on the sampled graphs,

e.g., edge density, bound node degrees.

Graphs of independent edges Fixed-degree graphs
For each node i, sample w/o replacement & nodes from

For every edge (3, j)
A; ; ~ Bernoulli(o(®;,5)). Categorical (SoftMax(®; 1,...,P: n)) .

+ As seen before, ® can be factorized and ps made input dependent, e.g.,

o=¢(2.2]), A~ po (Al X<, Ui, V).

[18] Kazi et al., “Differentiable graph module (dgm) for graph convolutional networks”, IEEE TPAMI 2022.
[19] Cini et al., “Sparse graph learning from spatiotemporal time series”, JMLR 2023.
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Latent graph learning

Learning graph distributions

Training typically involves optimizing terms similar to

L(0,®) = Eanpg[Lo(A)]
which average a cost Ly over all graphs according to ps.
For example,

£(0,®) =
(MSE) =Ea~ps [H}—G(Xt—W:ty A) - Xt:t+HH2] :

1
(CRPS)  =Ea~py [IFo(Xi—w:t, A) — Xqnml]] — gEA,A’NP(I, [||Fo(Xi-wt, A) — Fo(Xi—we, A

(The expected value Ex y over the input and output data distribution is omitted for brevity.)

pliE
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Latent graph learning

Gradient-based optimization and Monte Carlo sampling

Gradient-based optimization requires the computation of Vg and V4 of L(0, ®) = Ea~py [Le(A)].
© Gradient Vo L£(6, @) is can be estimated via Monte Carlo (MC) with standard tools
MC 1 m 1 m
VoL(0,®) '~ VHMZLH(A ) = MZVng(A )
with { A™}M_, being a set of i.i.d. M samples from ps.
® Estimating gradient V4 £(0, ®) via MC is less straightforward:
VaL(0,®) = VaEap,[Lo(A)]
@ Expanding the gradient leads to

VaoLl(0,P) = /LQ(A)V(LP(P(A)dA.

e notin the form of an expected value, e analytical computation is often unfeasible.

44



Latent graph learning

Reparametrization trick

© One approach is to reparametrize A ~ pg(A) as: A=g(De), e~ ple)
— forinstance, a ~ N (p, o) can be written asa = p + o, withe ~ N(0, 1).
Above rewriting decouples parameters ® from the random component e:

VeEanps [Lo(A)] = Ec [VaL(g(®, )] .
If A € {0,1}, gradient Vs ga (A) = 0 almost everywhere and undefined otherwise.
— Continuous relaxation is used, e.g., Concrete distribution.

© Relatively easy to implement,
® relies on continuous relaxations: subsequent computations scale with O(N?).

[20] Kipf et al., “Neural relational inference for interacting systems”, ICML 2018.
[21] Elinas et al., “Variational inference for graph convolutional networks in the absence of graph data and adversarial settings”, NeurlPS

2020.
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Latent graph learning

Score-function gradient estimator

@ Score-function gradient estimators rely on the relation
VoEpy [Lo(A)] = Ep, [Lo(A)Va log pa(A)]
In our forecasting settings, it reads

MC
~

Vol (0, D)

® suffer from high variance (use variance reduction techniques),
© allow to keep computations sparse through the model.

+ do not rely on continuous relaxation of discrete random variables;
» allow for sparse message passing in F(X;_yw.¢, A) by relying on sparse matrices A.

[19] Cini et al., “Sparse graph learning from spatiotemporal time series”, JMLR 2023.

M
Z (Fo(Xi—w, A), Xiyrr) Va log pa (Am).
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Latent graph learning

Computational efficiency

L S —— |
0OM 5
a520< N
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0 200 400 600
Number of nodes

e Score-function

200 400
Number of nodes

e Reparametrization trick
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Latent graph learning

Uncertainty quantification

While probabilistic models have been used to enable the learning of discrete variables (graph edges), the
associated edge probabilities can carry information about the relevance of the associated connections.

— It enables some degree of explainability and better informed decision-making.

A Assessing the calibration of latent variables is hard on real data.

—  Thisis due to their latent nature, for which observations are not available.

[22] Gray et al., “Bayesian inference of network structure from information cascades”, IEEE TSIPN 2020.
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Latent graph learning

Learning guarantees for latent graph calibration

©  Under appropriate assumptions, we can achieve: pa (Xt.t1 1| X:—wet) = p( Xt m| X <t).

— This means that the model output is calibrated.

©  Calibration of A is notimplied from that of the model output.

— Conditions on the function A — Xy. 1 = Fa(Xi_w, A) are requested.

©  For graphs and graph neural networks, these conditions appear easier to meet!

[23] Gneiting et al., “Probabilistic forecasting”, Annu. Rev. Stat. Appl. 2014.
[24] Manenti et al., Learning Latent Graph Structures and Their Uncertainty, Preprint 2024.
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Part 3

Future Directions



Graph State-Space Models




Graph State-Space Models

State-space models

h; = fST(htfla Xt—1, 77t71)

V¢ = fro(he, 1) yi
« Inputs x4, states h;, and outputs y; are different
attributed graphs.
« 7, v; are noise terms at the node/edge level. Input graph State graph Output graph

[25] Rangapuram et al., “Deep State Space Models for Time Series Forecasting”, NeurlPS 2018.

[26] Zambon et al., Graph State-Space Models, Preprint 2023.

[27] Alippi et al., Graph Kalman Filters, Preprint 2023.

[28] Buchnik et al., “GSP-kalmannet: Tracking graph signals via neural-aided Kalman filtering”, IEEE TSP 2024.
[29] Chouzenoux et al., “Sparse graphical linear dynamical systems”, JMLR 2024.
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Hierarchical processing

What we achieved so far

© Pairwise dependencies are embedded into the
processing.

© Predictions are localized w.rt. a node and its
neighbors.

© Operate at a fixed spatiotemporal scale.

® Higher-order dependencies are not explicitly
modeled.

4 t
time

Predictions
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Hierarchical processing

Hierarchical forecasting

« Hierarchical forecasting is about making predictions at

multiple resolutions.

+ Coherency constraints provide a regularization

mechanism.

« Predictions are coherent iff:

QY: =

where Y; contains stacked predictions for each level.

(1] -c]¥i=o,

y(2)’1

VRN

y(l)yl y(l),Q y(l)»3

[30] Hyndman et al., “Optimal combination forecasts for hierarchical time series”, Elsevier CSDA 2011.
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Hierarchical processing

Hierarchical Graph Predictor (HiGP)

1 2
v v
--o_-o K=2
K=1 o—0—0
-197-0 A1 on
-~ @®---@ K=0 r"f:): : 1(%“\
X CoN )
time t—s t—r t

© Combine hierarchical and graph-based forecasting.

We introduced a framework unifying the two.

© Operates at different spatial resolutions exploring a pyramidal graph structure.
© Exploits higher-order dependencies by operating on aggregated time series.

(© Hierarchical time series clusters are learned end-to-end.

[31] Cini et al., “Graph-based Time Series Clustering for End-to-End Hierarchical Forecasting”, ICML 2024.
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Hierarchical processing

Select, Reduce, Connect (SRC)

o]
SEL RED CON
—> —» O —>
)

« Select maps nodes into » Reduce specifies how + Connect specifies how to
supernodes, i.e., node observations should be rewire the graph after
clusters. aggregated. pooling.

[32] Grattarola et al., “Understanding Pooling in Graph Neural Networks”, IEEE TNNLS 2022.
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Hierarchical processing

A possible implementation

By exploiting the SRC framework to define the proper operators, hierarchical architectural biases can be

embedded into a time-then-space STGNN architecture as

R0 = seaene® (P w0 M), Temporal enc.
Z® = mp®) (Ht(k)’l,A(k)) 7 Intra-level prop.
. T —
H® = up® (Zf’”’l,s(’“) z* 1>’l,s(’“>z§’“+“’l>. Inter-level prop.
Rep(k) LiFr(k)

Representations can then be mapped to prediction using a readout.

55



Hierarchical processing

Making coherent hierarchical forecasts

+ Learning time series clusters end-to-end
We learn probabilistic cluster assignments and use a MinCut [33] regularize.
¢<]?)/T
k (k) _qy_ _¢"Y (k) _ (k=1) (k-1 k-1
sM ~p(s) =)= S, @M = Fy (V0 Ak, v,
Syeti !

Forecasting the resulting aggregates provides a self-supervised learning mechanism.
+ Forecast reconciliation
A differentiable reconciliation step ensures coherent forecasts by recombining predictions as

P=1-Q"(QQ") '@ ¥, = PY..

@ Computing the inverse has a cubic cost, a soft regularization can be used alternatively.

[33] Bianchi et al., “Spectral clustering with graph neural networks for graph pooling”, ICML 2020.
[34] Rangapuram et al., “End-to-end learning of coherent probabilistic forecasts for hierarchical time series”, ICML 2021.
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Hierarchical processing

Example of learned clusters

s k=1,N,=20 k=2.N.=10 k=3,N,=5
§20 10 ! A 10 i A
515 4 \n A nA y\ M\ X\
k=)
E 10 \ 5111 n 5 fal A A M
y AR
< S51TAY \f
0 0 0
Wed Thu Fri Sat Sun Wed Thu Fri Sat Sun

Wed Thu Fri Sat Sun

Learned hierarchical clusters from CER (energy consumption profiles).

[31] Cini et al., “Graph-based Time Series Clustering for End-to-End Hierarchical Forecasting”, ICML 2024.
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Hierarchical processing

Multi-scale spatiotemporal representations

Similar hierarchical processing can be jointly performed also over the temporal dimension.

This gives a hierarchy of multi-scale representations, each accounting for a specific space-time resolution.

Temporal Hierarchy

© Different scales might capture
different dynamics.

Spatial Hierarchy

© Helps with noisy and missing data.

Predictions

Attention ] .l‘/-/ll

" reweight s Fais
Incomplete past observations

[11] Marisca et al., “Graph-based Forecasting with Missing Data through Spatiotemporal Downsampling”, ICML 2024.
[35] Yu et al., “ST-Unet: A spatio-temporal U-network for graph-structured time series modeling” 2019.
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Hierarchical processing

Downsampling with missing data

Missing data mask M Observed M Missing Scores for X, Scores for X, g

I i
0.
0.
0.

« The model focuses on the fine-grained temporal scale - if the most recent data are not missing.
« When data are missing at a given node, higher levels in the spatial hierarchy are given more weight.
Slower dynamics become more relevant when long-range forecasting.

Nodes

2

Time steps

[11] Marisca et al., “Graph-based Forecasting with Missing Data through Spatiotemporal Downsampling”, ICML 2024.
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Theoretical properties

Theoretical properties of STGNNs

High interest in studying the expressive power
of GNNs in static graphs [36].

Recent work extended the focus to dynamic
settings, e.g., temporal graphs. L1 (1,0l —[01]

The important question

What’s the impact of different spatiotemporal
message-passing operators on the properties of
the resulting STGNN?

From [37].

[37] Gaoetal., “On the Equivalence Between Temporal and Static Equivariant Graph Representations”, ICML 2022.

[38] Gravina et al., “Long Range Propagation on Continuous-Time Dynamic Graphs”, ICML 2024.

[39] Beddar-Wiesing et al., “Weisfeiler-Lehman goes dynamic: An analysis of the expressive power of graph neural networks for attributed
and dynamic graphs”, Neural Networks 2024.

[40] Watega et al., “Expressive Power of Temporal Message Passing”, Preprint 2024.
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Conclusions

Some Takeaways

Deep Learning

+ Deep Learning
for time series

on graphs

Relational inductive biases allow for exploiting dependencies among the time series
© ... and effectively processing spatiotemporal data,
© while sharing most of the model parameters.

© Global-local models are a good starting point.

Resources. Tutorial paper [3] o ) Open-source library [41]

[3] Cini, Marisca, Zambon, and Alippi, “Graph Deep Learning for Time Series Forecasting”, Preprint 2023.
[41] Cini and Marisca, Torch Spatiotemporal, https://github.com/TorchSpatiotemporal/tsl 2022.
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