Learning on Graphs Conference · November 28, 2024

Graph Deep Learning for Time Series Processing

Forecasting, Reconstruction and Analysis

Andrea **Cini**, Ivan **Marisca**, Daniele **Zambon**

Graph Machine Learning Group [\(gmlg.ch\)](https://gmlg.ch/) The Swiss AI Lab IDSIA Università della Svizzera italiana

[Introduction](#page-1-0)

Traffic monitoring Traffic monitoring Smart cities Energy analitics

Physics Stock markets

Deep learning for time series forecasting

Modern deep learning forecasting methods rely on a single neural network trained on a collection of related time series.

- ⌣ Each time series is processed **independently**.
- ⌣ Parameters are **shared**.
- ⌣ Effective and **sample efficient**.
- ⌢ **Dependencies are neglected**.

^[1] Salinas et al., "DeepAR: Probabilistic forecasting with autoregressive recurrent networks", IJF 2020.

^[2] Benidis et al., "Deep Learning for Time Series Forecasting: Tutorial and Literature Survey", ACM CS 2022.

Introduction

Graph deep learning for time series forecasting

We will show graph deep learning (GDL) provides appropriate operators to go beyond these limitations.

- ⌣ **Dependencies** are **embedded into the processing** as inductive biases.
- ⌣ Operate on **sets** of **correlated time series**.
-

⌢ There are inherent **challenges** in applying this processing to data from the real world.

Introduction **What this tutorial is about**

This tutorial presents advances coming from the combination of

- 1. deep learning for time series and
- 2. deep learning on graphs.

The objective of the tutorial is to provide:

- 1. a comprehensive framework for graph-based time series processing models;
- 2. methods to address challenges and potential pitfalls;
- 3. tools and guidelines for real-world applications and developing new methods.

This presentation is complemented by a demo and a tutorial paper [\[3\]](#page-102-0).

^[3] Cini, Marisca, Zambon, and Alippi, "Graph Deep Learning for Time Series Forecasting", Preprint 2023.

Introduction **What this tutorial is not about**

. This tutorial is **not** about processing sequences of interactions in **temporal networks**.

 \rightarrow Graphs will be a representation of the (dynamic) relationships among (possibly irregular) time series.

Introduction **Tutorial outline**

- **1.1)** Correlated time series **2.1)** Scalability
- **1.2)** Graph-based representation **2.2)** Dealing with missing data
-
-
- Ð [Software demo](#page-49-0) Conclusions

[Part 1](#page-8-0) [Part 2](#page-51-0)

-
-
- **1.3)** STGNN architectures **2.3)** Latent graph learning
- **1.4)** Global and local models **2.4)** Model quality assessment
	-

Part 1

Graph-based Processing of Correlated Time series

[Correlated time series](#page-9-0)

Collections of time series

We consider a set $\mathcal D$ of N correlated time series. Each i-th time series can be associated with:

- $\bullet\,$ **observations** $\boldsymbol{x}_t^i \in \mathbb{R}^{d_x}$ at each time step $t;$
- $\bullet\,$ **exogenous variables** $u_t^i \in \mathbb{R}^{d_u}$ at each time step $t;$
- a vector of **static (time-independent) attributes** $\pmb{v}^i \in \mathbb{R}^{d_{\pmb{v}}}$.

Capital letters denote the stacked N time series, i.e., $\bm{X}_t \in \mathbb{R}^{N \times d_x}$, \bm{U}_t $\in \mathbb{R}^{N \times d_u}$. \rightarrow We call spatial the dimension spanning the collection.

^[3] Cini et al., "Graph Deep Learning for Time Series Forecasting", Preprint 2023.

Correlated time series

We consider a time-invariant stochastic process generating each time series as

$$
\boldsymbol{x}_t^i \sim p^i\left(\boldsymbol{x}_t^i\big\vert \boldsymbol{X}_{
$$

and assume the existence of a causality à la Granger among time series.

Furthermore time series

- are assumed
	- a) homogenous, b) synchronous, c) regularly sampled.
- can be generated by different processes.

Assumptions a), b), c) can be relaxed as we will discuss in the 2nd part.

Correlated time series

Example: Traffic monitoring system

Consider a sensor network monitoring the speed of vehicles at crossroads.

- $X_{\leq t}$ collects past traffic speed measurements.
- U_t stores identifiers for time-of-the-day and day-of-the-week.
- \bullet V collects static sensor's features, e.g., type or number of lanes of the monitored road.

 \rightarrow Strong dependencies among time series that reflect the road network.

[Forecasting](#page-13-0)

Forecasting **Time series forecasting**

In particular, we are interested in learning a parametric model $\mathcal{F}(\cdot;\theta)$ s.t.

$$
\mathcal{F}\left(\mathcal{X}_{t-W:t},\mathbf{U}_{t:t+H};\boldsymbol{\theta}\right)=\widehat{\boldsymbol{X}}_{t:t+H}\approx E_{p}\left[\boldsymbol{X}_{t:t+H}\right].
$$

Probabilistic predictors can be considered as well, but we focus on point forecasts.

Forecasting **Training objective**

For point predictors, parameters θ can be learned by minimizing a cost function $\ell(\cdot, \cdot)$ (e.g., MSE) on a training set

$$
\widehat{\theta} = \underset{\theta}{\arg\min} \frac{1}{NT} \sum_{t=1}^{T} \ell\left(\widehat{X}_{t:t+H}, X_{t:t+H}\right)
$$

$$
= \underset{\theta}{\arg\min} \frac{1}{NT} \sum_{t=1}^{T} \left\| X_{t:t+H} - \widehat{X}_{t:t+H} \right\|_{2}^{2}.
$$

, Choosing a different cost function allows for predicting other values.

 \rightarrow **Example:** minimizing the MAE results in forecasts of the median.

Forecasting

Global and local predictors

Local models

$$
\begin{array}{ccccccc}\n & & & \mathcal{N}_{\mathcal{N}} & \longrightarrow & f_{\theta i} & \longrightarrow & \mathcal{N}_{\mathcal{N}} & \mathcal{N}_{\
$$

Example: Box-Jenkins method

- Tailored to each time series.
- ⌢ Inefficient.

Global models

$$
\hat{\boldsymbol{x}}_{t+h}^i = f\left(\boldsymbol{x}_{t-W:t}^i, \ldots; \boldsymbol{\theta}\right)
$$

Example: DeepAR [\[1\]](#page-102-1)

Sample efficient.

⌣ Allows for more complex models.

\odot Both approaches neglect dependencies among time series.

^[1] Salinas et al., "DeepAR: Probabilistic forecasting with autoregressive recurrent networks", IJF 2020.

^[4] Montero-Manso et al., "Principles and algorithms for forecasting groups of time series: Locality and globality", IJF 2021.

Forecasting

Accounting for spatial dependencies

- One option is to consider the input as single multivariate time series
	- \rightarrow Resulting predictors are **local**: $\widehat{X}_{t+h} = f(X_{t-W,t}, \ldots; \theta)$.

 \odot High sample complexity and poor scalability.

- Models operating on sets of time series would allow to keep parameters shared.
	- \rightarrow Resulting predictors are **global**: $\qquad \widehat{X}_{t+h}^{\mathcal{S}} = \mathcal{F}\left(X_{t-W:t}^{\mathcal{S}}, \ldots; \theta \right)$ $\forall \mathcal{S} \subseteq \mathcal{D}$

 \odot Can be implemented by attention-based models (e.g, Transformers). ⌢ Does not exploit structural priors, high computational and sample complexity.

• Other methods (e.g., [\[5\]](#page-102-2)) rely on dimensionality reduction to extract shared latent factors.

 \odot Might work well if data are low-rank.

⌢ Local and relational information are lost and can still suffer from, scalability issues.

^[2] Benidis et al., "Deep Learning for Time Series Forecasting: Tutorial and Literature Survey", ACM CS 2022.

^[5] Sen et al., "Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting", NeurIPS 2019.

[Graph-based representation](#page-18-0)

Graph-based representation **Relational information**

 Ω Exploit functional dependencies as an inductive bias to improve the forecasts.

We can model pairwise relationships existing at time step t with adjacency matrix $\boldsymbol{A}_t \in \{0,1\}^{N \times N}.$

 \cdot A_t can be **asymmetric** and **dynamic** (can vary with t).

Relational information with attributes

Optional edge attributes $e_t^{ij} \in \mathbb{R}^{d_e}$ can be associated to each non-zero entry of $A_t.$

The set of attributed edges is denoted by

$$
\mathcal{E}_t \doteq \{ \langle (i,j), e_i^{ij} \rangle \, | \, \forall i,j : \mathbf{A}_t[i,j] \neq 0 \}.
$$

→ Edge attributes can be both **categorical** or **numerical**.

Graph-based representation

Example: Traffic monitoring system

Consider again the sensor network of the previous example.

- Edges in $\mathcal E$ can be obtained by considering the road network.
	- \rightarrow Road closures and traffic diversions can be accounted for with a dynamic topology \mathcal{E}_t .

Graph-based representations for correlated time series

 $\mathcal{G}_t \doteq \langle \bm{X}_t, \bm{U}_t, \mathcal{E}_t, \bm{V}\rangle$ contains the available information w.r.t. time step $t.$

^[3] Cini et al., "Graph Deep Learning for Time Series Forecasting", Preprint 2023.

Relational inductive biases for time series forecasting

Forecasts can be conditioned on the available relational information $\mathcal{E}_{t-W:t}$

$$
\widehat{\boldsymbol{X}}^{\mathcal{S}}_{t:T+H} = \mathcal{F}\left(\mathcal{G}^{\mathcal{S}}_{t-W:t},\!\boldsymbol{U}^{\mathcal{S}}_{t:t+H};\boldsymbol{\theta}\right) \qquad \forall \mathcal{S} \in \mathcal{D}
$$

The conditioning can act as a regularization to localize predictions w.r.t. each node.

- \odot Relational priors prune spurious correlations.
- \odot More scalable than standard multivariate models.
- \odot Can forecast any subset of correlated time series.

Spatiotemporal graph neural networks

We call spatiotemporal graph neural networks (STGNNs) a neural network exploiting both temporal and spatial relations of the input spatiotemporal time series.

Graph-based representation

A general recipe for building STGNNs

- ENC(\cdot) is the **encoding** layer, e.g., implemented by an MLP.
- STMP(·) is a stack of **spatiotemporal message-passing (STMP)** layers.
- \cdot DEC(\cdot) is the **readout** layer, e.g., implemented by an MLP.

^[3] Cini et al., "Graph Deep Learning for Time Series Forecasting". Preprint 2023.

Graph-based representation **A closer look**

Representations are updated as follows.

$$
\boldsymbol{h}_{t-1}^{i,0} = \text{EncoderR}\left(\boldsymbol{x}_{t-1}^i, \boldsymbol{u}_{t-1}^i, \boldsymbol{v}^i\right),\tag{1}
$$

$$
H_{t-1}^{l+1} = \text{STMP}^l\Big(H_{\leq t-1}^l, \mathcal{E}_{\leq t-1}\Big), \quad l = 0, \dots, L-1
$$
 (2)

$$
\hat{\boldsymbol{x}}_{t:t+H}^i = \text{DECODER}\left(\boldsymbol{h}_{t-1}^{i,L}, \boldsymbol{u}_{t:t+H}^i\right).
$$
\n(3)

- ENC(\cdot) process each observation independently.
- $STMP(·)$ is where propagation through time and space happens.
- DEC(\cdot) maps each representation to predictions.

^[3] Cini et al., "Graph Deep Learning for Time Series Forecasting", Preprint 2023.

Spatiotemporal message-passing (STMP)

STMP blocks can be defined as:

$$
\boldsymbol{h}_t^{i,l+1} = \mathsf{Up}^l\left(\boldsymbol{h}^{i,l}_{\leq t}, \underset{j \in \mathcal{N}_t(i)}{\mathrm{AgGR}} \left\{\mathrm{MSG}^l\big(\boldsymbol{h}^{i,l}_{\leq t}, \boldsymbol{h}^{j,l}_{\leq t}, \boldsymbol{e}^{ji}_{\leq t}\big)\right\}\right)
$$

Each block processes **sequences** while accounting for **relational dependencies**. As in standard MP operators:

- $\bullet \;\mathsf{MSG}^l(\ \cdot\)$ is a $\mathsf{message\,function}$, e.g., implemented by *temporal convolutional layers*.
- AGGR{ · } is a permutation invariant **aggregation function**.
- $\bullet\;$ UP $^{l}(\;\cdot\;)$ is an $\sf update$ function, e.g., implemented by an RNN.
- , Blocks can be implemented by composing MP and sequence modeling operators.
	- \rightarrow Many possible designs exist.

^[3] Cini et al., "Graph Deep Learning for Time Series Forecasting", Preprint 2023.

^[6] Gilmer et al., "Neural message passing for quantum chemistry", ICML 2017.

Design paradigms for STGNNs

Depending on the implementation of the STMP blocks, we categorize STGNNs into:

• **Time-and-Space (T&S)**

Temporal and spatial processing cannot be factorized in two separate steps.

• **Time-then-Space (TTS)**

Each time series is embedded in a vector and then representations are propagated on the graph.

• **Space-then-Time (STT)**

Spatial propagation is performed before processing the resulting time series.

Graph-based representation / Architectures **Time-and-Space**

In T&S models, representations at every node and time step are obtained by jointly propagating representation through time and space.

$$
\boldsymbol{H}_{t-1}^{l+1}=\textsf{STMP}^{l}\Big(\boldsymbol{H}_{\leq t-1}^{l},\mathcal{E}_{\leq t-1}\Big)
$$

Several options exist.

- Integrate MP into neural operators for sequential data.
	- Graph recurrent architectures, spatiotemporal convolutions, spatiotemporal attention, ...
- Use sequence molding operators to compute messages.
	- Temporal graph convolutions, spatiotemporal cross-attention, ...
- Product graph representations.

Example 1: From Recurrent Neural Networks...

Consider a standard GRU cell [\[7\]](#page-103-0).

$$
r_t^i = \sigma\left(\mathbf{\Theta}_r \left[\boldsymbol{x}_t^i || \boldsymbol{h}_{t-1}^i \right] + \boldsymbol{b}_r \right) \tag{4}
$$

$$
u_t^i = \sigma \left(\Theta_u \left[x_t^i || h_{t-1}^i \right] + b_u \right) \tag{5}
$$

$$
\boldsymbol{c}_t^i = \tanh\left(\boldsymbol{\Theta}_c\left[\boldsymbol{x}_t^i||\boldsymbol{r}_t^i \odot \boldsymbol{h}_{t-1}^i\right] + \boldsymbol{b}_c\right) \tag{6}
$$

$$
\boldsymbol{h}_t^i = \left(1 - \boldsymbol{u}_t^i\right) \odot \boldsymbol{c}_t^i + \boldsymbol{u}_t^i \odot \boldsymbol{h}_{t-1}^i \tag{7}
$$

Time series are processed independently for each node or as a single multivariate time series.

^[7] Chung et al., "Empirical evaluation of gated recurrent neural networks on sequence modeling" 2014.

...to Graph Convolutional Recurrent Neural Networks

We can obtain a T&S model by implementing the gates of the GRU with MP blocks:

$$
Z_t^l = H_t^{l-1}
$$
 (8)

$$
\boldsymbol{R}_t^l = \sigma\left(\mathsf{MP}_r^l\left(\left[\boldsymbol{Z}_t^l||\boldsymbol{H}_{t-1}^l\right], \mathcal{E}_t\right)\right),\tag{9}
$$

$$
O_t^l = \sigma\left(MP_o^l\left(\left[\mathbf{Z}_t^l||\mathbf{H}_{t-1}^l\right], \mathcal{E}_t\right)\right),\tag{10}
$$

$$
\boldsymbol{C}_t^l = \tanh\left(\text{MP}_c^l\left(\left[\boldsymbol{Z}_t^l||\boldsymbol{R}_t^l \odot \boldsymbol{H}_{t-1}^l\right], \mathcal{E}_t\right)\right),\tag{11}
$$

$$
H_t^l = O_t^l \odot H_{t-1}^l + (1 - O_t^l) \odot C_t^l, \tag{12}
$$

These T&S models are known as graph convolutional recurrent neural networks (GCRNNs) [\[8\]](#page-103-1).

^[8] Seo et al., "Structured sequence modeling with graph convolutional recurrent networks", ICONIP 2018.

The first GCRNN has been introduced in [\[8\]](#page-103-1), with message passing (MP) blocks implemented as polynomial graph convolutional filters.

GCRNNs have become popular in traffic forecasting with the Diffusion Convolutional Recurrent Neural Network (DCRNN) architecture [\[9\]](#page-103-2).

DCRNN relies on a bidirectional diffusion convolution:

$$
H'_{t} = \sum_{k=0}^{K} \left(D_{t, \text{out}}^{-1} A_{t} \right)^{k} H_{t} \Theta_{1}^{(k)} + \left(D_{t, \text{in}}^{-1} A_{t}^{\top} \right)^{k} H_{t} \Theta_{2}^{(k)}
$$
(13)

^[8] Seo et al., "Structured sequence modeling with graph convolutional recurrent networks", ICONIP 2018.

^[9] Li et al., "Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting", ICLR 2018.

Example 2: Spatiotemporal convolutional networks (i)

Spatiotemporal convolutional networks (STCNs) instead **alternate spatial and temporal convolutions**:

1. Compute intermediate representations by using a temporal convolutional layer:

$$
\boldsymbol{z}_{t-W:t}^{i,l}=\text{TCN}^{l}\left(\boldsymbol{h}_{t-W:t}^{i,l-1}\right)\qquad\forall\,i
$$

where TCN l indicates a temporal convolutional laver.

2. Compute the updated representation at each time step by using a graph convolution:

$$
\boldsymbol{H}^{l}_t = \mathsf{MP}^{l}\left(\boldsymbol{Z}^{l}_t, \mathcal{E}_t\right) \qquad \forall \, t
$$

Graph-based representation / Architectures

Spatiotemporal convolutional networks (ii)

The first example of such architecture is the STGCN by Yu et al. [\[10\]](#page-103-3).

The model is obtained by stacking STMP blocks consisting of

- a (gated) temporal convolution;
- a polynomial graph convolution;
- a second (gated) temporal convolution.

More advanced implementations exist, e.g., see Graph Wavenet [\[11\]](#page-103-4).

^[10] Yu et al., "Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting", IJCAI 2018. [11] Wu et al., "Graph wavenet for deep spatial-temporal graph modeling", IJCAI 2019.

Example 3: Temporal Graph Convolution

A more integrated approach instead consists of implementing a temporal propagation mechanism in the message function.

For example, we can design STMP layers s.t.

$$
\boldsymbol{h}^{i,l}_{t-W:t} = \text{TCN}_1^l\left(\boldsymbol{h}^{i,l-1}_{t-W:t}, \underset{j\in\mathcal{N}_t(i)}{\text{Aggr}} \left\{\text{TCN}_2^l\left(\boldsymbol{h}^{i,l-1}_{t-W:t}, \boldsymbol{h}^{j,l-1}_{t-W:t}, \boldsymbol{e}^{ji}_{t-W:t}\right)\right\}\right).
$$

 Ω Analogous models can be built with any sequence modeling architecture.

 \rightarrow **Example:** many rely on attention-based operators [\[12\]](#page-104-0)[\[13\]](#page-104-1).

^[12] Marisca et al., "Learning to Reconstruct Missing Data from Spatiotemporal Graphs with Sparse Observations", NeurIPS 2022. [13] Wu et al., "TraverseNet: Unifying Space and Time in Message Passing for Traffic Forecasting", TNNLS 2022.
Example 4: Product graph representations

An alternative option is to consider the sequence $G_{t-W:t}$ as a **single graph** with temporal and spatial edges.

In particular, **product graph representations** can be obtained by combining the two edge sets.

The resulting graph can be processed by any MP neural network.

^[14] Sabbagi et al., "Graph-time convolutional neural networks: Architecture and theoretical analysis", TPAMI 2023.

Building product graph representations

• **Cartesian product**

Spatial graphs are kept and each node is connected to itself in the previous time instant.

• **Kronecker product**

Each node is connected **only** to its neighbors in the previous time instant.

Graph-based representation / Architectures **Time-then-Space models**

The general recipe for a TTS model consists in:

- 1. Embedding each node-level time series in a vector.
- 2. Propagating obtained encodings throughout the graph with a stack of MP layers.

Graph-based representation / Architectures

Pros & Cons of TTS models

- **Pros:** \odot Easy to implement and computationally efficient.
	- \odot We can reuse operators we already know.
- **Cons:** \odot The 2-step encoding might introduce information bottlenecks.
	- \odot Accounting for changes in topology and dynamic edge attributes can be more problematic.

Space-then-Time

In STT approaches the two processing steps of TTS models are inverted:

- 1. Observations are propagated among nodes w.r.t. each time step using a stack of MP layers.
- 2. Each sequence of representations is processed by a sequence encoder.

 \odot They do not have the same computational advantages of TTS models.

Globality and locality in STGNNs

Standard STGNNs are **global** models.

- \odot Can handle arbitrary node sets.
- \odot Neighbors provide further conditioning on the predictions.
- \odot Might struggle with local effects.
- \odot Might need long windows and high model capacity.

Use hybrid global-local STGNNs.

Global-local STGNNs

 Ω We can turn some global components of the architecture into local.

- \odot Resulting models can capture local effects.
- \odot Might require a large number of local parameters.

Global-local STGNNs with node embeddings

Node embeddings can amortize the learning of local components.

Node embeddings are a table of **learnable parameters** $\bm{Q} \in \mathbb{R}^{N \times d_q}$ associated with **each node**.

- \odot Fed into encoder/decoder, amortize the learning of local components.
- Most of the model's parameters remain shared.
- Θ Number of parameters scales linearly with the number of time series ...
	- \rightarrow One might consider intermediate solutions, e.g., learning embeddings for clusters of time series.

^[15] Cini et al., "Taming Local Effects in Graph-based Spatiotemporal Forecasting", NeurlPS 2023.

Global and local models **Transferability**

Hybrid global-local STGNNs are not inductive models.

However, the cost of transfer learning can be reduced.

- \odot Keep shared parameters fixed and finetune local parameters only.
- Node embeddings can be regularized to facilitate transfer further.

^[15] Cini, Marisca, Zambon, and Alippi, "Taming Local Effects in Graph-based Spatiotemporal Forecasting", NeurIPS 2023.

^[16] Butera, De Felice, Cini, and Alippi, "On the Regularization of Learnable Embeddings for Time Series Processing", Preprint 2024.

Some empirical results

Table 1: MAE on benchmark datasets.

Global and local models **Transfer learning results**

We consider datasets coming from four different traffic networks.

 \rightarrow **One of the networks is left out** at training time and used for evaluating **transferability**.

Table 2: Transfer learning results (MAE) after fine-tuning on a week of data.

^[15] Cini et al., "Taming Local Effects in Graph-based Spatiotemporal Forecasting", NeurIPS 2023.

End of Part 1: what we have so far

- 1. We formalized the problem of processing correlated time series.
- 2. Graph representations allows for modeling dependencies among them.
- 3. We discussed forecasting problem and global/local deep learning models for time series.
- 4. We saw approaches to building spatiotemporal graph neural networks and the associated trade-offs.

Before discussing challenges, we will look at software implementations of the above.

DEMO

Coding Spatiotemporal GNNs

Coding Spatiotemporal GNNs

tsl: PyTorch Spatiotemporal Library

[tsl](https://torch-spatiotemporal.readthedocs.io/) (Torch Spatiotemporal) is a python library built upon [PyTorch](https://pytorch.org/) and [PyG](https://pytorch-geometric.readthedocs.io/en/latest/) to accelerate research on neural spatiotemporal data processing methods, with a focus on **Graph Neural Networks**.

 \blacksquare torch-spatiotemporal.readthedocs.io

§ github.com/TorchSpatiotemporal/tsl

. .

Notebook

[Spatiotemporal Graph Neural Networks with tsl](https://colab.research.google.com/drive/1F510uMFU1_j86R7u873lqZ4u3Oa-qC_L?usp=sharing)

[Open in Colab](https://colab.research.google.com/drive/1F510uMFU1_j86R7u873lqZ4u3Oa-qC_L?usp=sharing)

[17] Cini and Marisca, Torch Spatiotemporal, https://github.com/TorchSpatiotemporal/tsl 2022.

Part 2 **Challenges**

• **Scalability**

How to deal with large collections of time series?

• **Dealing with missing data**

How to deal with missing observations within the time series?

• **Latent graph learning**

What to do when the underlying graph is not known?

• **Model quality assessment**

How to evaluate our graph-based model?

[Scalability](#page-53-0)

Scalability

⌣ **The scalability feature**

Graph-based processing allows us to

- \odot learn a single inductive (global) model...
- \odot ...while conditioning on related time series in a **sparse** fashion.
- \odot The cost of this operation reduces from $\mathcal{O}\big(N^2\big)$ to $\mathcal{O}\big(|\mathcal{E}_t|\big)$

Scalability ⌢ **The scalability issue**

Spatiotemporal data span – as the name suggests – **two dimensions**:

- the spatial dimension the number of time series.
- the time dimension the number of time steps per time series.

In the real world, dealing with high-frequency, large-scale time series data is quite common.

- E.g., smart cities, environmental monitoring, finance
- ⌢ A large amount of data needs to be **processed at once**.
- ⌢ In particular, to account for **long-range** spatiotemporal dependencies.

Scalability

Computational complexity of STGNNs

W: length of time series \cdot N: number of nodes $\cdot |\mathcal{E}_t|$: number of edges \cdot L: number of MP layers

The computational complexity of T&S models is given by:

- node-wise temporal processing $\mathcal{O}(WN)$;
- L MP layers **for each time step** $\mathcal{O}\bigl(W L | \mathcal{E}_t| \bigr)$.

 $\rightarrow \mathcal{O}(W(N+L|\mathcal{E}_t|))$

 $\rightarrow \mathcal{O}(WN + L|\mathcal{E}_t|)$

A first step toward improving scalability is represented by TTS models, which perform:

- node-wise temporal processing $\mathcal{O}(WN);$
- L MP layers **at the last time step** $\mathcal{O}\big(L|\mathcal{E}_t|\big)$.

STT models, instead, do not have computational advantages over T&S models.

Scalability **Graph subsampling**

Computations can be reduced by training on subgraphs of the full network.

- \bullet sampling the K -th order neighborhood of a subset of nodes;
- **rewiring** the graph to reduce the total number of edges.

Mostly adapted from methods developed in **static graph processing** (e.g., [\[19\]](#page-105-0), [\[20\]](#page-105-1)).

- \odot Subsampling might break long-range spatiotemporal dependencies.
- \odot The learning signal may be noisy.

^[18] Gandhi et al., "Spatio-Temporal Multi-graph Networks for Demand Forecasting in Online Marketplaces", ECML-PKDD 2021.

^[19] Hamilton et al., "Inductive representation learning on large graphs", NeurIPS 2017.

^[20] Rong et al., "DropEdge: Towards Deep Graph Convolutional Networks on Node Classification", ICLR 2020.

Pre-processing methods (e.g., [\[21\]](#page-105-2)) enable scalability to large graphs by:

- precomputing a representation for each node's neighborhood **ahead of training**;
- processing the obtained node representations as if they were **i.i.d. samples**.

An extension to spatiotemporal data is given by SGP [\[22\]](#page-105-3), which acts in 2 steps:

- 1. obtain a temporal encoding at each time step with a deep echo state network 1 :
- 2. propagate such encodings through the graph using powers of a graph shift operator.

^[21] Frasca et al., "SIGN: Scalable inception graph neural networks" 2020.

^[22] Cini et al., "Scalable Spatiotemporal Graph Neural Networks", AAAI 2023.

^[23] Liu et al., "Do we really need graph neural networks for traffic forecasting?" Preprint 2023.

¹A randomized recurrent neural networks

Scalability

SGP: Scalable Graph Predictor [\[22\]](#page-105-3)

Extracted representations can be sampled uniformly across time and space during training.

- \odot The cost of a training step is independent of W, N and $|\mathcal{E}_t|$.
- ⌣ Performance matches state of the art.
- \odot More storage space is required the number of extracted features is $\gg d_x$.
- \odot More reliant on hyperparameter selection than end-to-end approaches.

^[22] Cini et al., "Scalable Spatiotemporal Graph Neural Networks", AAAI 2023.

Scalability **Hierarchical processing**

We can reduce computational complexity by using coarser-grained representations of the input.

In space, this can be achieved through graph pooling [\[24\]](#page-106-0).

- \odot Reduced number of operations to reach the same receptive field.
- \odot Introduce bottlenecks in information

^[24] Grattarola et al., "Understanding Pooling in Graph Neural Networks" 2024.

[Dealing with missing data](#page-61-0)

The problem of missing data

So far, we assumed to deal with **complete sequences**.

– i.e., to have valid observations associated with each node (sensor) and time step.

However, time series collected by real-world sensor networks often have missing data, due to:

- faults, of either transient or permanent nature;
- asynchronicity among the time series;
- communication errors.

Most forecasting methods operate on complete sequences.

 \rightarrow We need a way to impute, i.e., *reconstruct*, missing data.

Dealing with missing data

Time series imputation

Time series imputation (TSI)

Given a window of observations $X_{t:t+T}$, mask $M_{t:t+T}$, and covariates $U_{t:t+T}$, the goal is to estimate the missing observations in the sequence $\overline{X}_{t:t+T}$.

 \rightarrow We use a **mask** $m_t^i \in \{0,1\}$ to distinguish between missing (0) and valid (1) observations.

Dealing with missing data **Missing data types**

We can categorize missing data patterns according to the conditional distribution $p\left(\bm{m}_t^i\,|\,\bm{M}_{\leq t}\right)$.

• **Point missing**

 $p\left(\boldsymbol{m}_t^i=\boldsymbol{0}\right)$ is the same across nodes and time steps, i.e., RVs associated to each \boldsymbol{m}_t^i are iid.

$$
p\left(\boldsymbol{m}_{t}^{i}\right)=\mathcal{B}(\eta) \quad \forall \, i, t
$$

• **Block missing**

 $p\left(\boldsymbol{m}_t^i=\boldsymbol{0}\right)$ is not independent from missing data at other nodes and/or time steps.

Temporal block missing	$p(m_t^i m_{t-1}^i) \neq p(m_t^i)$
Spatial block missing	$p(m_t^i \{m_t^j\}^{j \neq i}) \neq p(m_t^i)$
Spatiotemporal block missing	$p(m_t^i m_{t-1}^i, \{m_t^j\}^{j \neq i}) \neq p(m_t^i)$

Dealing with missing data **Optimization**

Parameters θ can be learned by minimizing a loss function $\ell(\cdot, \cdot)$ on valid observations in a training set:

$$
\widehat{\theta} = \argmin_{\theta} \sum_{t=1}^{T} \sum_{i=1}^{N} \frac{\left\| \boldsymbol{m}_t^i \odot \ell\left(\hat{x}_t^i, x_t^i\right) \right\|_1}{\|\boldsymbol{m}_t^i\|_1} . \quad \leftarrow \quad \text{e.g., } \ell = \left(\hat{x}_t^i - x_t^i\right)^2
$$

For imputation, we mark some valid observations as missing with mask $\overline{\bm{m}}^i_t$ to obtain ground-truth labels:

$$
\widehat{\theta} = \argmin_{\theta} \sum_{t=1}^{T} \sum_{i=1}^{N} \frac{\left\|\overline{\boldsymbol{m}}_t^{i} \odot \ell\left(\overline{\boldsymbol{x}}_t^{i}, \boldsymbol{x}_t^{i}\right)\right\|_1}{\left\|\overline{\boldsymbol{m}}_t^{i}\right\|_1}.
$$

 \blacktriangle Data where $\overline{\bm{m}}_t^i = 1$ must <u>not</u> be used in the model to obtain the imputations.

Dealing with missing data

Deep learning for TSI

Besides standard statistical methods, deep learning approaches have become a popular alternative.

– In particular, autoregressive models (e.g., RNNs).

⌣ Effective in exploiting past (and future, with bidirectional models) node observations.

 \odot Struggle in capturing nonlinear space-time dependencies.

Dealing with missing data

Time series imputation + relational inductive biases

Again, we can use the available relational information to condition the model, i.e.,

$$
\boldsymbol{x}_{t+k}^i \sim p\left(\boldsymbol{x}_{t+k}^i \,|\, \boldsymbol{X}_{t:t+T} \odot \boldsymbol{M}_{t:t+T}, \boldsymbol{A}\right) \qquad k \in [0,T)
$$

Graph Recurrent Imputation Network (GRIN)

Similarly to GCRNN for forecasting, we can integrate graph processing into the autoregressive approach for imputation [\[25\]](#page-106-1).

In these approaches, the distribution $p\left(\bm{x}_t^i\,|\, \bm{X}_{0:\infty}\odot\bm{M}_{0:\infty}\right)$ is modeled into three independent steps:

Information from previous observations.

 $p\!\left(\boldsymbol{x}_t^i\,|\,\boldsymbol{X}_{< t} \odot \boldsymbol{M}_{< t}\right)$

Information from subsequent observations.

$$
p\!\left(\boldsymbol{x}_{t}^{i} \,|\, \boldsymbol{X}_{>t} \odot \boldsymbol{M}_{>t}\right)
$$

Information from related concurrent observations.

$$
p\Big(\boldsymbol{x}_{t}^{i} \, | \, \big\{\boldsymbol{x}_{t}^{j} \odot \boldsymbol{m}_{t}^{j} \big\}^{j\neq i}\Big)
$$

Typically modeled by bidirectional autoregressive models. Enabled by message passing.

^[25] Cini et al., "Filling the G_ap_s: Multivariate Time Series Imputation by Graph Neural Networks", ICLR 2022.

Dealing with missing data

Imputation *before* **forecasting**

TSI is often used as a preprocessing step for a downstream task, e.g., forecasting.

⌢ Often necessary to use standard forecasting methods with irregular time series.

 \odot Might introduce biases due to errors in estimated values.

Dealing with missing data

Imputation *in place of* **forecasting**

Imputation methods can also be adapted to perform forecasting.

 \odot It is a workaround (this is not their purpose).

S Might perform poorly due to the absence of values in the forecasting horizon.

Forecasting from partial observations

A more direct approach: avoid the reconstruction step!

 \rightarrow Design forecasting architecture to directly deal with irregular observations.

^[26] Zhang et al., "Graph-guided network for irregularly sampled multivariate time series", ICLR 2022.

[28] Marisca et al., "Graph-based Forecasting with Missing Data through Spatiotemporal Downsampling", ICML 2024.

^[27] Zhong et al., "Heterogeneous spatio-temporal graph convolution network for traffic forecasting with missing values", IEEE ICDCS 2021.
Dealing with missing data **Virtual sensing**

The practice of estimating unmeasured states using models and existing observations.

The power of graphs:

- \odot The relational processing allows us to condition estimates on data close in space.
- \odot The inductive property of MP allows us to handle new nodes and edges.
- \odot Useful in applications where sensing has a cost.

^[29] Wu et al., "Inductive Graph Neural Networks for Spatiotemporal Kriging", AAAI 2021.

^[30] De Felice et al., "Graph-Based Virtual Sensing from Sparse and Partial Multivariate Observations", ICLR 2024.

Graph imputation for virtual sensing

Add a fictitious node with **no data** and let the model infer the corresponding time series.

Clearly, several assumptions are needed

- high degree of homogeneity of sensors,
- capability to reconstruct from observations at neighboring sensors,
- and many more...

^[12] Marisca et al., "Learning to Reconstruct Missing Data from Spatiotemporal Graphs with Sparse Observations", NeurIPS 2022. [25] Cini et al., "Filling the G_ap_s: Multivariate Time Series Imputation by Graph Neural Networks", ICLR 2022.

Learning an adjacency matrix

- \odot Relational information is not always (or only partially) available,
- \odot or might be ineffective in capturing spatial dynamics.
- \odot Relational architectural biases can nonetheless be exploited
	- \rightarrow **extract a graph** from the time series or node attributes

- When possible, the learned graph should be sparse.
- It can be interpreted as regularizing a spatial attention operator.
- This task is found under different names:

graph structure learning, latent graph learning, graph inference...

Latent graph learning **Time-series similarities**

Probably, the simplest approach to extract a graph from the time series is by computing time series similarity scores.

- Pearson correlation
- Correntropy
- Granger causality
- Kernels for time series
- . . .

 \rightarrow Thresholding might be necessary to obtain binary and sparse graphs.

Inferring latent structures from time series

Model the graph as a latent variable determining the realizations of the time series.

• They rely on assumptions, such as of signal smoothness and of a diffusion process.

Dedicated loss functions are formulated and minimized, e.g.,

$$
\text{trace}(\boldsymbol{X}^{\top}\boldsymbol{L}\boldsymbol{X})=\frac{1}{2}\sum_{ij}\boldsymbol{A}_{i,j}\|\boldsymbol{X}_i-\boldsymbol{X}_j\|_2^2
$$

constraining L (or A) to be a Laplacian (adjacency matrix) and promoting sparsity.

 \rightarrow These approaches are commonly derived from a graph signal processing point of view.

^[31] Dong et al., "Learning Laplacian matrix in smooth graph signal representations", IEEE TSP 2016.

^[32] Mateos et al., "Connecting the dots: Identifying network structure via graph signal processing", IEEE SP Mag 2019.

Task-oriented latent graph learning

An integrated approach: learn the **relations** end-to-end with the downstream task

 \rightarrow e.g., by minimizing the forecasting error (MAE, MSE...).

Two different formulations:

- 1. learning directly an adjacency matrix $\boldsymbol{A} \in \mathbb{R}^{N \times N};$
- 2. learning a probability distribution over graphs p_{Φ} generating \bm{A} (often $\in \{0,1\}^{N \times N}$).

A One key challenge is keeping both A and the subsequent computations sparse. \rightarrow non-trivial with gradient-based optimization.

Latent graph learning **Direct approach**

A direct approach consists in learning \widetilde{A} as function $\xi(\cdot)$ of edge scores $\Phi \in \mathbb{R}^{N \times N}$ as

$$
\widetilde{\boldsymbol{A}}=\xi\left(\Phi\right)
$$

Edge scores Φ

- can be a table of learnable model parameters,
- obtained as a function of the inputs and/or other parameters:

$$
\Phi = \Phi(\boldsymbol{X}, \widetilde{\Phi}).
$$

Function $\xi(\cdot)$ can enforce structures on \widetilde{A} , like, \rightarrow make \widetilde{A} binary, a k-NN graph, a tree...

Latent graph learning **Edge score factorization**

The number of possible edge scores is quadratic in the number of nodes ($\Phi \in \mathbb{R}^{N \times N}$)

 \rightarrow a common approach is to factorize Φ :

$$
\widetilde{A} = \xi(\Phi) \qquad \Phi = Z_s Z_t^{\top}
$$

with

- $\textbf{\textit{-}}\;\textbf{\textit{Z}}_s\in\mathbb{R}^{N\times d}$ source node embeddings
- $\textbf{\textit{•}} \;\; \textbf{Z}_{t} \in \mathbb{R}^{N \times d}$ target node embeddings

 00000 00000 $\Phi =$ $=$ \mathbf{Z}

 Z_s and Z_t can be learned as tables of (local) parameters or as a function of the input window.

^[11] Wu et al., "Graph wavenet for deep spatial-temporal graph modeling". IJCAI 2019.

Pro & Cons of the direct approach

- ⌣ Easy to implement.
- \odot Many possible parametrizations.
- C Edge scores are usually easy to learn end-to-end.
- \odot It often results in dense computations with $\mathcal{O}(N^2)$ complexity.
- \odot Sparsifying A results in sparse gradients.
- \odot Encoding prior structural information requires smart parametrizations.

Latent graph learning **Probabilistic methods**

In this context, probabilistic methods aim at learning a parametric distribution p_{Φ} for A.

• Different parametrizations of p_{Φ} allow for embedding graph structural priors on the sampled graphs, e.g., edge density, bound node degrees.

For every edge (i, j)

 $A_{i,j} \sim$ Bernoulli $(\sigma(\Phi_{i,j}))$.

 $\overline{\mathrm{d}}$

Fixed-degree graphs

For each node i , sample w/o replacement k nodes from

Categorical (SoftMax($\Phi_{i,1}, \ldots, \Phi_{i,N}$)).

• As seen before, Φ can be factorized and p_{Φ} made input dependent, e.g.,

$$
\Phi = \xi \left(\mathbf{Z}_s \mathbf{Z}_t^\top \right), \qquad \qquad \mathbf{A} \sim p_{\Phi} \left(\mathbf{A} | \mathbf{X}_{< t}, \mathbf{U}_{< t}, \mathbf{V} \right).
$$

^[33] Kazi et al., "Differentiable graph module (dgm) for graph convolutional networks", IEEE TPAMI 2022.

^[34] Cini et al., "Sparse graph learning from spatiotemporal time series", JMLR 2023.

Learning graph distributions

Training losses average over all graphs according to p_{Φ} , e.g., based on point predictions

$$
\mathcal{L}(\Phi) = \mathbb{E}_{\mathbf{A} \sim p_{\Phi}} \left[\ell \left(\widehat{\mathbf{X}}_{t:t+H}, \mathbf{X}_{t:t+H} \right) \right], \qquad \qquad \mathcal{L}(\Phi) = \ell \left(\mathbb{E}_{\mathbf{A} \sim p_{\Phi}} \left[\widehat{\mathbf{X}}_{t:t+H} \right], \mathbf{X}_{t:t+H} \right),
$$

where $X_{t:t+H} = \mathcal{F}(X_{t-W:t}, A; \theta)$.

More generally, comparing predictive distributions by means of a divergence measure Δ

$$
\mathcal{L}(\Phi) = \Delta \left(p_{\Phi}(\widehat{\mathbf{X}}_{t:t+H}), p(\mathbf{X}_{t:t+H}) \right).
$$

4 Gradient-based optimization requires computing $\nabla_{\Phi} \mathcal{L}(\Phi)$, \rightarrow i.e., differentiating w.r.t. the parameters of the integrated distribution.

- \odot Analytical computations is often unfeasible;
- \odot Monte Carlo approximations require care.

Monte Carlo gradient estimators

 $\widehat{\mathcal{Q}}$ One approach is to reparametrize $\widetilde{A}\sim p_{\Phi}(A)$ as: $\qquad \widetilde{A}=g\left(\Phi,\boldsymbol{\varepsilon}\right),\qquad \boldsymbol{\varepsilon}\sim p(\boldsymbol{\varepsilon})$ decoupling parameters Φ from the random component $\varepsilon\colon\quad \nabla_\Phi \mathcal{L}(\Phi)=\mathbb{E}_{\boldsymbol{\varepsilon}}\left[\nabla_\Phi \ell(\widehat{\boldsymbol{X}},\boldsymbol{X})\right]$.

- \odot Practical and easy to implement,
- \odot rely on continuous relaxations and make subsequent computations scale with $\mathcal{O}(N^2).$

 Ω Conversely, score-function (SF) gradient estimators rely on the relation

$$
\nabla_{\Phi} \mathbb{E}_{p_{\Phi}}\left[\ell(\widehat{\boldsymbol{X}},\boldsymbol{X})\right] = \mathbb{E}_{p_{\Phi}}\left[\ell(\widehat{\boldsymbol{X}},\boldsymbol{X})\nabla_{\Phi}\log p_{\Phi}\right]
$$

 \odot suffer from high variance (use variance reduction techniques),

allow to keep computations sparse through the model.

 \rightarrow we can use Monte Carlo estimator.

^[35] Kipf et al., "Neural relational inference for interacting systems", ICML 2018.

^[34] Cini et al., "Sparse graph learning from spatiotemporal time series", JMLR 2023.

Computational efficiency

With score-based gradient estimators $\nabla_\Phi \mathcal{L}(\Phi) = \mathbb{E}_{\bm A \sim p_{\Phi}}\left[\ell(\widehat{\bm X},\bm X)\nabla_\Phi \log p_{\Phi}(\bm A)\right].$

 \odot They are computationally efficient as ∇_{Φ} is computed with respect to log $p_{\Phi}(A)$.

- do not rely on continuous relaxation of discrete random variables;
- allow for sparse message passing to compute \widehat{X} (and, in turn, of $\ell(\widehat{X},X)$) by rely on sparse matrices A.
- \odot They can be sample inefficient due to the high variance of the gradient estimates.

Latent graph learning **Uncertainty quantification**

While probabilistic models have been used to enable learning of discrete variables (graph edges), the associated edge probabilities can carry information about the relevance of the associated connections.

 \rightarrow It enables some degree of explainability and better informed decision-making.

. Assessing the calibration of latent variables is hard on real data.

- \rightarrow This is due to their latent nature, for which observations are not available.
- Ω Studies provide some learning guarantees, e.g.,

Minimizing appropriate divergence measures $\Delta\left(p(\bm{X}),p_{\Phi}(\widehat{\bm{X}})\right)$ of the data and predictive distributions $p(X), p_{\Phi}(\widehat{X})$, respectively, enables calibration of the $p_{\Phi}(A)$.

^[36] Gray et al., "Bayesian inference of network structure from information cascades", IEEE TSIPN 2020.

^[37] Manenti et al., Learning Latent Graph Structures and Their Uncertainty, Preprint 2024.

Questions to answer

Consider a predictor $\mathcal F$ trained to solve a time-series forecasting problem.

- 1. Is the predictor optimal for the problem at hand?
- 2. Where does the predictor appear sub-optimal?
- 3. How can we improve the predictor?

Remark: Multiple optimality criteria can be considered.

 \blacktriangleright Relational inductive biases can help us here too.

Performance at task

Given two predictors \mathcal{F}_a , \mathcal{F}_b and performance metric M (e.g., MAE, MSE).

- we consider \mathcal{F}_a better than \mathcal{F}_b if $M(\mathcal{F}_a)$ is statistically better than $M(\mathcal{F}_b)$.
- we consider \mathcal{F}_a optimal if there is no other model \mathcal{F}_b better than \mathcal{F}_a .

Can we further improve over the best model so far \mathcal{F}_a ?

- \rightarrow Either we find a new model \mathcal{F}_* better than \mathcal{F}_a
- \rightarrow or we need prior knowledge about the modeled system.

Residual correlation analysis

Studying the correlation between prediction residuals $r^i_t\doteq x^i_{t:t+H}-\hat{x}^i_{t:t+H}$ allows for testing model optimality.

If residuals are dependent \implies there is information that the model hasn't captured \implies model predictions can be improved.

Remarks: Residual correlation analysis

- \odot Is independent of specific performance measures.
- \odot Does not quantify how much a model can improve w.r.t. a specific performance metric.
- \odot Does not rely on comparisons with other models.

Research focused mainly on either serial correlation [\[38\]](#page-108-0)–[\[40\]](#page-108-1) or spatial correlation [\[41\]](#page-108-2), [\[42\]](#page-109-0).

AZ-Whiteness test: a spatio-temporal test

The test is defined by statistic

$$
C(\{\mathbf{r}\}) = \underbrace{\sum_{t} \sum_{(i,j) \in \mathcal{E}_t} w_{ijt} \operatorname{sgn}(\langle r_t^i, r_t^j \rangle)}_{\text{spatial edge}} + \underbrace{\sum_{t} \sum_{i} w_{it} \operatorname{sgn}(\langle r_t^i, r_{t+1}^i \rangle)}_{\text{temporal edge}} \longrightarrow \mathcal{N}(0, 1)
$$

 \odot distribution-free and residuals can be non-identically distributed.

 \odot computation is linear in the number of edges and time steps.

^[43] Zambon et al., "AZ-whiteness Test: A Test for Signal Uncorrelation on Spatio-Temporal Graphs", NeurIPS 2022.

Where can we improve?

Analyzing the AZ-whiteness test statistic computed on subgraphs of the spatio-temporal graph allows for discovering insightful correlation patterns.

[44] Zambon et al., "Where and How to Improve Graph-based Spatio-temporal Predictors" 2023.

[Future directions](#page-93-0)

Future directions

Hierarchical processing

- \odot Standard STGNNs operate at a fixed spatiotemporal scale.
- Combine hierarchical and graph-based representations.
- Exploit higher-order dependencies by operating on hierarchical representations of the input.
- Can also be used for hierarchical forecasting and to obtain reconciled predictions.

^[45] Yu et al., "ST-Unet: A spatio-temporal U-network for graph-structured time series modeling" 2019.

^[46] Cini et al., "Graph-based Time Series Clustering for End-to-End Hierarchical Forecasting", ICML 2024.

^[28] Marisca et al., "Graph-based Forecasting with Missing Data through Spatiotemporal Downsampling", ICML 2024.

Future directions

State-space models

$$
\begin{cases} \mathbf{h}_t = f_{\text{ST}}(\mathbf{h}_{t-1}, \mathbf{x}_{t-1}, \boldsymbol{\eta}_{t-1}) \\ \mathbf{y}_t = f_{\text{RO}}(\mathbf{h}_t, \boldsymbol{\nu}_t) \end{cases}
$$

- Inputs x_t , states h_t , and outputs y_t are different attributed graphs.
- η_t , ν_t are noise terms at the node/edge level.

- [48] Zambon et al., Graph State-Space Models, Preprint 2023.
- [49] Alippi et al., Graph Kalman Filters, Preprint 2023.
- [50] Buchnik et al., "GSP-kalmannet: Tracking graph signals via neural-aided Kalman filtering", IEEE TSP 2024.
- [51] Chouzenoux et al., "Sparse graphical linear dynamical systems", JMLR 2024.

^[47] Rangapuram et al., "Deep State Space Models for Time Series Forecasting", NeurlPS 2018.

Future directions **Inductive learning**

In real-world applications, one often needs to

- operate under changes in the network connectivity
- make predictions for newly added nodes

• transfer the model to different sensor networks (collections of time series)

Useful in several tasks, like, forecasting, missing data imputation, and virtual sensing.

 \triangle Performance can easily degrade if the data distribution of target nodes

- deviates from that at training nodes
- changes over time.

^[15] Cini et al., "Taming Local Effects in Graph-based Spatiotemporal Forecasting", NeurIPS 2023.

Yin et al., "Nodetrans: A graph transfer learning approach for traffic prediction", Preprint 2022.

^[53] Prabowo et al., "Traffic forecasting on new roads using spatial contrastive pre-training (SCPT)" 2024. ⁸³

Future directions **Benchmarks**

Open datasets

In line with OGB [\[54\]](#page-111-0), TGB [\[55\]](#page-111-1), TGB 2.0 [\[56\]](#page-111-2).

- Energy analytics (CER-E, PV-US) [\[22\]](#page-105-0)
- Traffic flow (LargeST) [\[57\]](#page-111-3)
- ...

Software

Standard model evaluation platforms

- Torch SpatioTemporal [\[17\]](#page-104-0)
- BasicTS [\[58\]](#page-112-0)

• ...

^[22] Cini et al., "Scalable Spatiotemporal Graph Neural Networks", AAAI 2023.

^[57] Liu et al., "Largest: A benchmark dataset for large-scale traffic forecasting", NeurIPS (D&B) 2024.

^[17] Cini et al., Torch Spatiotemporal, https://github.com/TorchSpatiotemporal/tsl 2022.

^[58] Shao et al., "Exploring Progress in Multivariate Time Series Forecasting: Comprehensive Benchmarking and Heterogeneity Analysis", IEEE TKDE 2024.

[Conclusions](#page-98-0)

. .

Conclusions

Some Takeaways

Deep Learning for **time series**

$$
+ \\
$$

Deep Learning on **graphs**

- Relational inductive biases allow for exploiting dependencies among the time series,
- ...while sharing most of the model parameters,
- \odot ...and overcoming limits due to irregularities in time and space.
- Whenever possible, global-local models are a safe starting point.

Challenges. Scalability • Missing data • Latent graph learning • Model quality assessment **Resources.** \mathbb{E} [Tutorial paper](https://arxiv.org/abs/2310.15978) [\[3\]](#page-102-0) • Ω [Open-source library](https://github.com/TorchSpatiotemporal/tsl) [\[17\]](#page-104-0)

^[3] Cini, Marisca, Zambon, and Alippi, "Graph Deep Learning for Time Series Forecasting", Preprint 2023.

^[17] Cini and Marisca, Torch Spatiotemporal, https://github.com/TorchSpatiotemporal/tsl 2022.

Andrea **Cini** Ivan **Marisca** Daniele **Zambon**

Graph Machine Learning Group gmlg.ch

THE END

Questions?

References i

- [1] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, **"DeepAR: Probabilistic forecasting with autoregressive recurrent networks,"** International Journal of Forecastina, vol. 36, no. 3, pp. 1181-1191, 2020.
- [2] K. Benidis, S. S. Rangapuram, V. Flunkert, et al., **"Deep learning for time series forecasting: Tutorial and literature survey,"** ACM Comput. Surv., vol. 55, no. 6, Dec. 2022, ISSN: 0360-0300. DOI: [10.1145/3533382](https://doi.org/10.1145/3533382). [Online]. Available: <https://doi.org/10.1145/3533382>.
- [3] A. Cini, I. Marisca, D. Zambon, and C. Alippi, **"Graph deep learning for time series forecasting,"** arXiv preprint arXiv:2310.15978, 2023.
- [4] P. Montero-Manso and R. J. Hyndman, **"Principles and algorithms for forecasting groups of time series: Locality and globality,"** International Journal of Forecasting, vol. 37, no. 4, pp. 1632–1653, 2021.
- [5] R. Sen, H.-F. Yu, and I. S. Dhillon, **"Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting,"** Advances in Neural Information Processing Systems, vol. 32, 2019.

References ii

- [6] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, **"Neural message passing for quantum chemistry,"** in International conference on machine learning, PMLR, 2017, pp. 1263-1272.
- [7] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, **"Empirical evaluation of gated recurrent neural networks on sequence modeling,"** arXiv preprint arXiv:1412.3555, 2014.
- [8] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, **"Structured sequence modeling with graph convolutional recurrent networks,"** in International Conference on Neural Information Processing, Springer, 2018, pp. 362–373.
- [9] Y. Li, R. Yu, C. Shahabi, and Y. Liu, **"Diffusion convolutional recurrent neural network: Data-driven traffic forecasting,"** in International Conference on Learning Representations, 2018.
- [10] B. Yu, H. Yin, and Z. Zhu, **"Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting,"** in Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018, pp. 3634–3640.
- [11] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, **"Graph wavenet for deep spatial-temporal graph modeling,"** in Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019, pp. 1907–1913.

References iii

- [12] I. Marisca, A. Cini, and C. Alippi, **"Learning to reconstruct missing data from spatiotemporal graphs with sparse observations,"** in Advances in Neural Information Processing Systems, 2022.
- [13] Z. Wu, D. Zheng, S. Pan, Q. Gan, G. Long, and G. Karypis, **"Traversenet: Unifying space and time in message passing for traffic forecasting,"** IEEE Transactions on Neural Networks and Learning Systems, 2022.
- [14] M. Sabbaqi and E. Isufi, **"Graph-time convolutional neural networks: Architecture and theoretical analysis,"** IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 12, pp. 14 625–14 638, Dec. 2023, ISSN: 1939-3539. DOI: [10.1109/TPAMI.2023.3311912](https://doi.org/10.1109/TPAMI.2023.3311912).
- [15] A. Cini, I. Marisca, D. Zambon, and C. Alippi, **"Taming local effects in graph-based spatiotemporal forecasting,"** arXiv preprint arXiv:2302.04071, 2023.
- [16] L. Butera, G. De Felice, A. Cini, and C. Alippi, **"On the regularization of learnable embeddings for time series processing,"** arXiv preprint arXiv:2410.14630, 2024.
- [17] A. Cini and I. Marisca, **Torch Spatiotemporal**, Mar. 2022. [Online]. Available: <https://github.com/TorchSpatiotemporal/tsl>.

References iv

- [18] A. Gandhi, Aakanksha, S. Kaveri, and V. Chaoji, **"Spatio-temporal multi-graph networks for demand forecasting in online marketplaces,"** in Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track: European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings, Part IV, 2021, pp. 187–203, ISBN: 978-3-030-86513-9. DOI: [10.1007/978-3-030-86514-6_12](https://doi.org/10.1007/978-3-030-86514-6_12). [Online]. Available: https://doi.org/10.1007/978-3-030-86514-6_12.
- [19] W. Hamilton, Z. Ying, and J. Leskovec, **"Inductive representation learning on large graphs,"** Advances in neural information processing systems, vol. 30, 2017.
- [20] Y. Rong, W. Huang, T. Xu, and J. Huang, **"Dropedge: Towards deep graph convolutional networks on node classification,"** in International Conference on Learning Representations, 2020.
- [21] F. Frasca, E. Rossi, D. Eynard, B. Chamberlain, M. Bronstein, and F. Monti, **"SIGN: Scalable inception graph neural networks,"** arXiv preprint arXiv:2004.11198, 2020.
- [22] A. Cini, I. Marisca, F. M. Bianchi, and C. Alippi, **"Scalable spatiotemporal graph neural networks,"** Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 6, pp. 7218–7226, Jun. 2023. DOI: [10.1609/aaai.v37i6.25880](https://doi.org/10.1609/aaai.v37i6.25880).

References v

- [23] X. Liu, Y. Liang, C. Huang, et al., **"Do we really need graph neural networks for traffic forecasting?**" arXiv preprint arXiv:2301.12603, 2023.
- [24] D. Grattarola, D. Zambon, F. M. Bianchi, and C. Alippi, **"Understanding pooling in graph neural networks,"** IEEE Transactions on Neural Networks and Learning Systems, vol. 35, no. 2, pp. 2708–2718, 2024.
- [25] A. Cini, I. Marisca, and C. Alippi, **"Filling the g_ap_s: Multivariate time series imputation by graph neural networks,"** in International Conference on Learning Representations, 2022. [Online]. Available: <https://openreview.net/forum?id=kOu3-S3wJ7>.
- [26] X. Zhang, M. Zeman, T. Tsiligkaridis, and M. Zitnik, **"Graph-guided network for irregularly sampled multivariate time series,"**, 2022.
- [27] W. Zhong, Q. Suo, X. Jia, A. Zhang, and L. Su, **"Heterogeneous spatio-temporal graph convolution network for traffic forecasting with missing values,"** in 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS), IEEE, 2021, pp. 707–717.
- [28] I. Marisca, C. Alippi, and F. M. Bianchi, **"Graph-based forecasting with missing data through spatiotemporal downsampling,"** in Proceedings of the 41st International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, vol. 235, PMLR, 2024, pp. 34 846–34 865.

References vi

- [29] Y. Wu, D. Zhuang, A. Labbe, and L. Sun, **"Inductive Graph Neural Networks for Spatiotemporal Kriging,"** in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, 2021, pp. 4478–4485.
- [30] G. De Felice, A. Cini, D. Zambon, V. Gusev, and C. Alippi, **"Graph-based Virtual Sensing from Sparse and Partial Multivariate Observations,"** in The Twelfth International Conference on Learning Representations, 2024. [Online]. Available: <https://openreview.net/forum?id=CAqdG2dy5s>.
- [31] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, "Learning laplacian matrix in smooth graph **signal representations,"** IEEE Transactions on Signal Processing, vol. 64, no. 23, pp. 6160–6173, 2016.
- [32] G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro, **"Connecting the dots: Identifying network structure via graph signal processing,"** IEEE Signal Processing Magazine, vol. 36, no. 3, pp. 16–43, 2019.
- [33] A. Kazi, L. Cosmo, S.-A. Ahmadi, N. Navab, and M. M. Bronstein, **"Differentiable graph module (dgm) for graph convolutional networks,"** IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 2, pp. 1606–1617, 2022.
- [34] A. Cini, D. Zambon, and C. Alippi, **"Sparse graph learning from spatiotemporal time series,"** Journal of Machine Learning Research, vol. 24, no. 242, pp. 1–36, 2023.
References vii

- [35] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel, **"Neural relational inference for interacting systems,"** in International conference on machine learning, PMLR, 2018, pp. 2688–2697.
- [36] C. Gray, L. Mitchell, and M. Roughan, **"Bayesian inference of network structure from information cascades,"** IEEE Transactions on Signal and Information Processing over Networks, vol. 6, pp. 371–381, 2020.
- [37] A. Manenti, D. Zambon, and C. Alippi, **Learning Latent Graph Structures and their Uncertainty,** May 2024.
- [38] J. Hosking, **"Equivalent Forms of the Multivariate Portmanteau Statistic,"** Journal of the Royal Statistical Society: Series B (Methodological), vol. 43, no. 2, pp. 261–262, 1981.
- [39] Z. Li, C. Lam, J. Yao, and Q. Yao, **"On Testing for High-Dimensional White Noise,"** The Annals of Statistics, vol. 47, no. 6, pp. 3382–3412, 2019.
- [40] A. Bose and W. Hachem, **"A Whiteness Test Based on the Spectral Measure of Large Non-Hermitian Random Matrices,"** in ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2020, pp. 8768–8771.
- [41] P. A. P. Moran, **"Notes on Continuous Stochastic Phenomena,"** Biometrika, vol. 37, no. 1/2, pp. 17–23, 1950, ISSN: 0006-3444. DOI: [10.2307/2332142](https://doi.org/10.2307/2332142).

References viii

- [42] A. D. Cliff and K. Ord, **"Spatial Autocorrelation: A Review of Existing and New Measures with Applications,"** Economic Geography, vol. 46, pp. 269–292, 1970, ISSN: 0013-0095. DOI: [10.2307/143144](https://doi.org/10.2307/143144).
- [43] D. Zambon and C. Alippi, **"AZ-whiteness test: A test for signal uncorrelation on spatio-temporal graphs,"** in Advances in Neural Information Processing Systems, A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, Eds., 2022.
- [44] D. Zambon and C. Alippi, **"Where and how to improve graph-based spatio-temporal predictors,"** arXiv preprint arXiv:2302.01701, 2023.
- [45] B. Yu, H. Yin, and Z. Zhu, **"ST-Unet: A spatio-temporal U-network for graph-structured time series modeling,"** arXiv preprint arXiv:1903.05631, 2019.
- [46] A. Cini, D. Mandic, and C. Alippi, **"Graph-based Time Series Clustering for End-to-End Hierarchical Forecasting,"** International Conference on Machine Learning, 2024.
- [47] S. S. Rangapuram, M. W. Seeger, J. Gasthaus, L. Stella, Y. Wang, and T. Januschowski, **"Deep State Space Models for Time Series Forecasting,"** in Advances in Neural Information Processing Systems, vol. 31, Curran Associates, Inc., 2018.

References ix

- [48] D. Zambon, A. Cini, L. Livi, and C. Alippi, **Graph state-space models,** Jan. 2023. DOI: [10.48550/arXiv.2301.01741](https://doi.org/10.48550/arXiv.2301.01741).
- [49] C. Alippi and D. Zambon, **Graph Kalman Filters,** Mar. 2023. DOI: [10.48550/arXiv.2303.12021](https://doi.org/10.48550/arXiv.2303.12021).
- [50] I. Buchnik, G. Sagi, N. Leinwand, Y. Loya, N. Shlezinger, and T. Routtenberg, **"Gsp-kalmannet: Tracking graph signals via neural-aided kalman filtering,"** IEEE Transactions on Signal Processing, 2024.
- [51] E. Chouzenoux and V. Elvira, **"Sparse graphical linear dynamical systems,"** Journal of Machine Learning Research, vol. 25, no. 223, pp. 1–53, 2024.
- [52] X. Yin, F. Li, Y. Shen, H. Qi, and B. Yin, **"Nodetrans: A graph transfer learning approach for traffic prediction,"** arXiv preprint arXiv:2207.01301, 2022.
- [53] A. Prabowo, H. Xue, W. Shao, P. Koniusz, and F. D. Salim, **"Traffic forecasting on new roads using spatial contrastive pre-training (scpt),"** Data Mining and Knowledge Discovery, vol. 38, no. 3, pp. 913–937, 2024.

References x

- [54] W. Hu, M. Fey, M. Zitnik, et al., **"Open graph benchmark: Datasets for machine learning on graphs,"** in Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33, Curran Associates, Inc., 2020, pp. 22 118–22 133. [Online]. Available: [https:](https://proceedings.neurips.cc/paper_files/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf) [//proceedings.neurips.cc/paper_files/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-](https://proceedings.neurips.cc/paper_files/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf) [Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf).
- [55] S. Huang, F. Poursafaei, J. Danovitch, et al., **"Temporal graph benchmark for machine learning on temporal graphs,"** in Advances in Neural Information Processing Systems, A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, Eds., vol. 36, Curran Associates, Inc., 2023, pp. 2056–2073. [Online]. Available: [https:](https://proceedings.neurips.cc/paper_files/paper/2023/file/066b98e63313162f6562b35962671288-Paper-Datasets_and_Benchmarks.pdf) [//proceedings.neurips.cc/paper_files/paper/2023/file/066b98e63313162f6562b35962671288-](https://proceedings.neurips.cc/paper_files/paper/2023/file/066b98e63313162f6562b35962671288-Paper-Datasets_and_Benchmarks.pdf)

[Paper-Datasets_and_Benchmarks.pdf](https://proceedings.neurips.cc/paper_files/paper/2023/file/066b98e63313162f6562b35962671288-Paper-Datasets_and_Benchmarks.pdf).

- [56] J. Gastinger, S. Huang, M. Galkin, et al., **"Tgb 2.0: A benchmark for learning on temporal knowledge graphs and heterogeneous graphs,"** in Advances in Neural Information Processing Systems, 2024.
- [57] X. Liu, Y. Xia, Y. Liang, et al., **"Largest: A benchmark dataset for large-scale traffic forecasting,"** Advances in Neural Information Processing Systems, vol. 36, 2024.

References xi

[58] Z. Shao, F. Wang, Y. Xu, et al., **"Exploring progress in multivariate time series forecasting: Comprehensive benchmarking and heterogeneity analysis,"** IEEE Transactions on Knowledge and Data Engineering, pp. 1–14, 2024. DOI: [10.1109/TKDE.2024.3484454](https://doi.org/10.1109/TKDE.2024.3484454).