
Learning on Graphs Conference · November 28, 2024

Graph Deep Learning for Time Series Processing
Forecasting, Reconstruction and Analysis

Andrea Cini, Ivan Marisca, Daniele Zambon

Graph Machine Learning Group (gmlg.ch)
The Swiss AI Lab IDSIA
Università della Svizzera italiana

https://gmlg.ch/
https://gmlg.ch/
https://idsia.ch/
https://usi.ch/

Introduction

Traffic monitoring Smart cities Energy analitics

Physics Stock markets

Introduction

Deep learning for time series forecasting

Modern deep learning forecasting methods rely on a single neural network trained on a collection of
related time series.

⌣ Each time series is processed independently.

⌣ Parameters are shared.

⌣ Effective and sample efficient.

⌢ Dependencies are neglected.

time

NN

NN

NN

NN

NN

History Predictions

Ti
m

e
se

rie
s

co
lle

ct
io

n

[1] Salinas et al., “DeepAR: Probabilistic forecasting with autoregressive recurrent networks”, IJF 2020.
[2] Benidis et al., “Deep Learning for Time Series Forecasting: Tutorial and Literature Survey”, ACM CS 2022.

2

Introduction

Graph deep learning for time series forecasting

We will show graph deep learning (GDL) provides appropriate operators to go beyond these limitations.

⌣ Dependencies are embedded into the
processing as inductive biases.

⌣ Operate on sets of correlated time series.

⌣ Parameters are shared. GNN

GNN

GNN

GNN

GNN

time

History Predictions

⌢ There are inherent challenges in applying this processing to data from the real world.

3

Introduction

What this tutorial is about

This tutorial presents advances coming from the combination of

1. deep learning for time series and

2. deep learning on graphs.

STGNN

STGNN

STGNN

STGNN

STGNN

The objective of the tutorial is to provide:

1. a comprehensive framework for graph-based time series processing models;
2. methods to address challenges and potential pitfalls;
3. tools and guidelines for real-world applications and developing new methods.

This presentation is complemented by a demo and a tutorial paper [3].

[3] Cini, Marisca, Zambon, and Alippi, “Graph Deep Learning for Time Series Forecasting”, Preprint 2023.

4

Introduction

What this tutorial is not about

. This tutorial is not about processing sequences of interactions in temporal networks.

time

Te
m

po
ra

l n
et

w
or

k

→ Graphs will be a representation of the (dynamic) relationships among (possibly irregular) time series.

5

Introduction

Tutorial outline

Part 1 Part 2
1.1) Correlated time series 2.1) Scalability

1.2) Graph-based representation 2.2) Dealing with missing data

1.3) STGNN architectures 2.3) Latent graph learning

1.4) Global and local models 2.4) Model quality assessment

Ð Software demo � Conclusions

6

Part 1

Graph-based Processing
of Correlated Time series

Correlated time series

Correlated time series

Collections of time series
We consider a setD of N correlated time series. Each i-th time series can be associated with:

• observations xi
t ∈ Rdx at each time step t;

• exogenous variables ui
t ∈ Rdu at each time step t;

• a vector of static (time-independent) attributes vi ∈ Rdv .

Ta
rg

et
 ti

m
e

se
rie

s

time time

Ex
og

en
ou

s v
ar

ia
bl

es

St
at

ic
 a

ttr
ib

ut
es

Capital letters denote the stacked N time series, i.e., Xt ∈ RN×dx , Ut∈ RN×du .
→ We call spatial the dimension spanning the collection.

[3] Cini et al., “Graph Deep Learning for Time Series Forecasting”, Preprint 2023.
7

Correlated time series

Correlated time series

We consider a time-invariant stochastic process generating each time series as

xi
t ∼ pi

(
xi

t

∣∣X<t,U≤t,V
)

for all i = 1 . . . N, t = 0, . . . , T − 1

and assume the existence of a causality à la Granger among time series.

Furthermore time series
• are assumed

a) homogenous, b) synchronous, c) regularly sampled.

• can be generated by different processes.

Notation:
Xt = ⟨Xt,Ut,V ⟩

X<t = [X0, · · · ,Xt−2,Xt−1]

, Assumptions a),b),c) can be relaxed as we will discuss in the 2nd part.

8

Correlated time series

Example: Traffic monitoring system
Consider a sensor network monitoring the speed of vehicles at crossroads.

time

• X<t collects past traffic speed measurements.

• Ut stores identifiers for time-of-the-day and day-of-the-week.

• V collects static sensor’s features, e.g., type or number of lanes of the monitored road.

→ Strong dependencies among time series that reflect the road network.

9

Forecasting

Forecasting

Time series forecasting

Multi-step time-series forecasting

Given a window of W ≥ 1 past values

Xt−W :t = [Xt−W , . . . ,Xt−1],

predict H ≥ 1 future observations
Xt+h h = 1, . . . , H.

time

In particular, we are interested in learning a parametric modelF (· ;θ) s.t.

F (Xt−W :t,Ut:t+H ;θ) = X̂t:t+H ≈ Ep [Xt:t+H] .

Probabilistic predictors can be considered as well, but we focus on point forecasts.

10

Forecasting

Training objective

For point predictors, parameters θ can be learned by minimizing a cost function ℓ(· , ·) (e.g., MSE) on a
training set

θ̂ = argmin
θ

1

NT

T∑
t=1

ℓ
(
X̂t:t+H ,Xt:t+H

)
= argmin

θ

1

NT

T∑
t=1

∥∥∥Xt:t+H − X̂t:t+H

∥∥∥2

2
.

, Choosing a different cost function allows for predicting other values.
→ Example: minimizing the MAE results in forecasts of the median.

11

Forecasting

Global and local predictors

Local models

x̂i
t+h = f

(
xi

t−W :t, . . . ;θ
i
)

Example: Box-Jenkins method

⌣ Tailored to each time series.

⌢ Inefficient.

Global models

x̂i
t+h = f

(
xi

t−W :t, . . . ;θ
)

Example: DeepAR [1]

⌣ Sample efficient.

⌣ Allows for more complex models.

⌢ Both approaches neglect dependencies among time series.

[1] Salinas et al., “DeepAR: Probabilistic forecasting with autoregressive recurrent networks”, IJF 2020.
[4] Montero-Manso et al., “Principles and algorithms for forecasting groups of time series: Locality and globality”, IJF 2021.

12

Forecasting

Accounting for spatial dependencies
• One option is to consider the input as single multivariate time series

→ Resulting predictors are local: X̂t+h = f (Xt−W :t, . . . ;θ) .

⌢ High sample complexity and poor scalability.

• Models operating on sets of time series would allow to keep parameters shared.

→ Resulting predictors are global: X̂S
t+h = F

(
XS

t−W :t, . . . ;θ
)
, ∀S ⊆ D

⌣ Can be implemented by attention-based models (e.g, Transformers).
⌢ Does not exploit structural priors, high computational and sample complexity.

• Other methods (e.g., [5]) rely on dimensionality reduction to extract shared latent factors.
⌣ Might work well if data are low-rank.
⌢ Local and relational information are lost and can still suffer from, scalability issues.

[2] Benidis et al., “Deep Learning for Time Series Forecasting: Tutorial and Literature Survey”, ACM CS 2022.
[5] Sen et al., “Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting”, NeurIPS 2019.

13

Graph-based representation

Graph-based representation

Relational information

� Exploit functional dependencies as an inductive bias to improve
the forecasts.

We can model pairwise relationships existing at time step t with
adjacency matrix At ∈ {0, 1}N×N .
• At can be asymmetric and dynamic (can vary with t).

time

14

Graph-based representation

Relational information with attributes

Optional edge attributes eij
t ∈ Rde can be associated to each non-zero entry of At.

The set of attributed edges is denoted by

Et
.
= {⟨(i, j), eij

t ⟩ | ∀i, j : At[i, j] ̸= 0}.

→ Edge attributes can be both categorical or numerical.

15

Graph-based representation

Example: Traffic monitoring system

Consider again the sensor network of the previous example.

time

• Edges in E can be obtained by considering the road network.
→ Road closures and traffic diversions can be accounted for with a dynamic topology Et.

16

Graph-based representation

Graph-based representations for correlated time series

Node/edge attributes

Target variables

Exogenous variables

Graph-based collection representation

Nodes (sensors)

Edges (functional dependencies)

time

Ty
pi

ca
lly

 st
at

ic Tim
e series

time

time

Gt
.
= ⟨Xt,Ut, Et,V ⟩ contains the available information w.r.t. time step t.

[3] Cini et al., “Graph Deep Learning for Time Series Forecasting”, Preprint 2023. 17

Graph-based representation

Relational inductive biases for time series forecasting

Forecasts can be conditioned on the available relational
information Et−W :t

X̂S
t:T+H = F

(
GSt−W :t,U

S
t:t+H ;θ

)
∀S ∈ D

The conditioning can act as a regularization to localize
predictions w.r.t. each node.

⌣ Relational priors prune spurious correlations.

⌣ More scalable than standard multivariate models.

⌣ Can forecast any subset of correlated time series.
time

18

Graph-based representation

Spatiotemporal graph neural networks
We call spatiotemporal graph neural networks (STGNNs) a neural network exploiting both temporal and
spatial relations of the input spatiotemporal time series.

STGNN

STGNN

STGNN

STGNN

STGNN

time

History Predictions

We focus on models based on message passing (MP).
19

Graph-based representation

A general recipe for building STGNNs
We consider STGNNs consisting of three main components

DEC

DEC

DEC

DEC

DECSTMPSTMP

STMPSTMP

STMPSTMP

STMPSTMP

STMPSTMPSTMP

STMP

STMP

STMP

STMP

time

History Predictions

ENC

ENC

ENC

ENC

ENC

• ENC(·) is the encoding layer, e.g., implemented by an MLP.
• STMP(·) is a stack of spatiotemporal message-passing (STMP) layers.
• DEC(·) is the readout layer, e.g., implemented by an MLP.

[3] Cini et al., “Graph Deep Learning for Time Series Forecasting”, Preprint 2023.

20

Graph-based representation

A closer look

Representations are updated as follows.

hi,0
t−1 = ENCODER

(
xi

t−1,u
i
t−1,v

i
)
, (1)

H l+1
t−1 = STMPl

(
H l

≤t−1, E≤t−1

)
, l = 0, . . . , L− 1 (2)

x̂i
t:t+H = DECODER

(
hi,L

t−1,u
i
t:t+H

)
. (3)

• ENC(·) process each observation independently.

• STMP(·) is where propagation through time and space happens.

• DEC(·) maps each representation to predictions.

[3] Cini et al., “Graph Deep Learning for Time Series Forecasting”, Preprint 2023.

21

Graph-based representation

Spatiotemporal message-passing (STMP)
STMP blocks can be defined as:

hi,l+1
t = UPl

(
hi,l

≤t, AGGR
j∈Nt(i)

{
MSGl

(
hi,l

≤t,h
j,l
≤t, e

ji
≤t

)})
Each block processes sequences while accounting for relational dependencies.

As in standard MP operators:

• MSGl(·) is a message function, e.g., implemented by temporal convolutional layers.
• AGGR{ · } is a permutation invariant aggregation function.
• UPl(·) is an update function, e.g., implemented by an RNN.

, Blocks can be implemented by composing MP and sequence modeling operators.
→ Many possible designs exist.

[3] Cini et al., “Graph Deep Learning for Time Series Forecasting”, Preprint 2023.
[6] Gilmer et al., “Neural message passing for quantum chemistry”, ICML 2017.

22

Graph-based representation

Design paradigms for STGNNs

Depending on the implementation of the STMP blocks, we categorize STGNNs into:

• Time-and-Space (T&S)
Temporal and spatial processing cannot be factorized in two separate steps.

• Time-then-Space (TTS)
Each time series is embedded in a vector and then representations are propagated on the graph.

• Space-then-Time (STT)
Spatial propagation is performed before processing the resulting time series.

23

Graph-based representation / Architectures

Time-and-Space

In T&S models, representations at every node and time step are obtained by jointly propagating
representation through time and space.

H l+1
t−1 = STMPl

(
H l

≤t−1, E≤t−1

)
Several options exist.

• Integrate MP into neural operators for sequential data.
– Graph recurrent architectures, spatiotemporal convolutions, spatiotemporal attention, ...

• Use sequence molding operators to compute messages.
– Temporal graph convolutions, spatiotemporal cross-attention, ...

• Product graph representations.

24

Graph-based representation / Architectures

Example 1: From Recurrent Neural Networks...

Consider a standard GRU cell [7].

ri
t = σ

(
Θr

[
xi

t||hi
t−1

]
+ br

)
(4)

ui
t = σ

(
Θu

[
xi

t||hi
t−1

]
+ bu

)
(5)

cit = tanh
(
Θc

[
xi

t||ri
t ⊙ hi

t−1

]
+ bc

)
(6)

hi
t =

(
1− ui

t

)
⊙ cit + ui

t ⊙ hi
t−1 (7)

Time series are processed independently for each node or as a single multivariate time series.

[7] Chung et al., “Empirical evaluation of gated recurrent neural networks on sequence modeling” 2014.

25

Graph-based representation / Architectures

...to Graph Convolutional Recurrent Neural Networks

We can obtain a T&S model by implementing the gates of the GRU with MP blocks:

Zl
t = H l−1

t (8)

Rl
t = σ

(
MPl

r

([
Zl

t||H l
t−1

]
, Et

))
, (9)

Ol
t = σ

(
MPl

o

([
Zl

t||H l
t−1

]
, Et

))
, (10)

Cl
t = tanh

(
MPl

c

([
Zl

t||Rl
t ⊙H l

t−1

]
, Et

))
, (11)

H l
t = Ol

t ⊙H l
t−1 + (1−Ol

t)⊙Cl
t, (12)

These T&S models are known as graph convolutional recurrent neural networks (GCRNNs) [8].

[8] Seo et al., “Structured sequence modeling with graph convolutional recurrent networks”, ICONIP 2018.

26

Graph-based representation / Architectures

Popular GCRNNs

The first GCRNN has been introduced in [8], with message passing (MP) blocks implemented as polynomial
graph convolutional filters.

GCRNNs have become popular in traffic forecasting with the Diffusion Convolutional Recurrent Neural
Network (DCRNN) architecture [9].

DCRNN relies on a bidirectional diffusion convolution:

H ′
t =

K∑
k=0

(
D−1

t,outAt

)k
HtΘ

(k)
1 +

(
D−1

t,inA
⊤
t

)k

HtΘ
(k)
2 (13)

[8] Seo et al., “Structured sequence modeling with graph convolutional recurrent networks”, ICONIP 2018.
[9] Li et al., “Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting”, ICLR 2018.

27

Graph-based representation / Architectures

Example 2: Spatiotemporal convolutional networks (i)

Spatiotemporal convolutional networks (STCNs) instead alternate spatial and temporal convolutions:

1. Compute intermediate representations by using a temporal convolutional layer:

zi,l
t−W :t = TCNl

(
hi,l−1

t−W :t

)
∀ i

where TCNl indicates a temporal convolutional layer.

2. Compute the updated representation at each time step by using a graph convolution:

H l
t = MPl

(
Zl

t, Et
)

∀ t

28

Graph-based representation / Architectures

Spatiotemporal convolutional networks (ii)
The first example of such architecture is the STGCN by Yu et al. [10].

The model is obtained by stacking STMP blocks
consisting of

• a (gated) temporal convolution;

• a polynomial graph convolution;

• a second (gated) temporal convolution.

Courtesy of [10].

More advanced implementations exist, e.g., see Graph Wavenet [11].

[10] Yu et al., “Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting”, IJCAI 2018.
[11] Wu et al., “Graph wavenet for deep spatial-temporal graph modeling”, IJCAI 2019.

29

Graph-based representation / Architectures

Example 3: Temporal Graph Convolution

A more integrated approach instead consists of implementing a temporal propagation mechanism in the
message function.

For example, we can design STMP layers s.t.

hi,l
t−W :t = TCNl

1

(
hi,l−1

t−W :t, AGGR
j∈Nt(i)

{
TCNl

2

(
hi,l−1

t−W :t,h
j,l−1
t−W :t, e

ji
t−W :t

)})
.

� Analogous models can be built with any sequence modeling architecture.
→ Example: many rely on attention-based operators [12][13].

[12] Marisca et al., “Learning to Reconstruct Missing Data from Spatiotemporal Graphs with Sparse Observations”, NeurIPS 2022.
[13] Wu et al., “TraverseNet: Unifying Space and Time in Message Passing for Traffic Forecasting”, TNNLS 2022.

30

Graph-based representation / Architectures

Example 4: Product graph representations

An alternative option is to consider the sequence Gt−W :t as a single graph with temporal and spatial
edges.

In particular, product graph representations can be obtained by combining the two edge sets.

· · ·
t−W t− 2 t− 1

Temporal graph: Spatial graph:

The resulting graph can be processed by any MP neural network.

[14] Sabbaqi et al., “Graph-time convolutional neural networks: Architecture and theoretical analysis”, TPAMI 2023.

31

Graph-based representation / Architectures

Building product graph representations

• Cartesian product
Spatial graphs are kept and each node is connected to itself in the previous time instant.

• Kronecker product
Each node is connected only to its neighbors in the previous time instant.

• ...

32

Graph-based representation / Architectures

Time-then-Space models
The general recipe for a TTS model consists in:

1. Embedding each node-level time series in a vector.

2. Propagating obtained encodings throughout the graph with a stack of MP layers.

1. hi,1
t = SEQENC

(
hi,0

≤t

)
2. H l+1

t = MPl
(
H l

t , Et
)

H0
≤t

SEQENC
SEQENC

SEQENC
SEQENC

(
H1

t ,A
)

MPL

MP2
MP1

HL
t

33

Graph-based representation / Architectures

Pros & Cons of TTS models

Pros: ⌣ Easy to implement and computationally efficient.

⌣ We can reuse operators we already know.

Cons: ⌢ The 2-step encoding might introduce information bottlenecks.

⌢ Accounting for changes in topology and dynamic edge attributes can be more
problematic.

34

Graph-based representation / Architectures

Space-then-Time
In STT approaches the two processing steps of TTS models are inverted:

1. Observations are propagated among nodes w.r.t. each time step using a stack of MP layers.
2. Each sequence of representations is processed by a sequence encoder.

1. Hi,l
t = MPl

(
Hi,l−1

t , Et
)

2. hi,L
t = SEQENC

(
hi,L−1

t−W :t

)

HL−1
t−W :t

SEQENC
SEQENC

SEQENC
SEQENC

HL
t

MPL

MP2
MP1

Hi,0
t−W :t, Et−W :t

⌢ They do not have the same computational advantages of TTS models.

35

Global and local models

Global and local models

Globality and locality in STGNNs

DEC

DEC

DEC

DEC

DECSTMPSTMP

STMPSTMP

STMPSTMP

STMPSTMP

STMPSTMPSTMP

STMP

STMP

STMP

STMP

ENC

ENC

ENC

ENC

ENC

Standard STGNNs are global models.

⌣ Can handle arbitrary node sets.

⌣ Neighbors provide further conditioning on the
predictions.

⌢ Might struggle with local effects.

⌢ Might need long windows and high model
capacity.

� Use hybrid global-local STGNNs.

36

Global and local models

Global-local STGNNs

DEC

DEC

DEC

DEC

DECSTMPSTMP

STMPSTMP

STMPSTMP

STMPSTMP

STMPSTMPSTMP

STMP

STMP

STMP

STMP

ENC

ENC

ENC

ENC

ENC

� We can turn some global components of the architecture into local.

⌣ Resulting models can capture local effects.

⌢ Might require a large number of local parameters.

37

Global and local models

Global-local STGNNs with node embeddings

DEC

DEC

DEC

DECSTMPSTMP

STMPSTMP

STMPSTMP

STMPSTMP

STMPSTMPSTMP

STMP

STMP

STMP

STMP

ENC

ENC

ENC

ENC

ENC

DEC

Node embeddings can amortize the learning of local components.

Node embeddings are a table of learnable parameters Q ∈ RN×dq associated with each node.

⌣ Fed into encoder/decoder, amortize the learning of local components.
⌣ Most of the model’s parameters remain shared.
7 Number of parameters scales linearly with the number of time series . . .

→ One might consider intermediate solutions, e.g., learning embeddings for clusters of time series.

[15] Cini et al., “Taming Local Effects in Graph-based Spatiotemporal Forecasting”, NeurIPS 2023.

38

Global and local models

Transferability

DEC

DEC

DEC

DECSTMPSTMP

STMPSTMP

STMPSTMP

STMPSTMP

STMPSTMPSTMP

STMP

STMP

STMP

STMP

ENC

ENC

ENC

ENC

ENC

DEC

, Hybrid global-local STGNNs are not inductive models.

However, the cost of transfer learning can be reduced.

⌣ Keep shared parameters fixed and finetune local parameters only.
⌣ Node embeddings can be regularized to facilitate transfer further.

[15] Cini, Marisca, Zambon, and Alippi, “Taming Local Effects in Graph-based Spatiotemporal Forecasting”, NeurIPS 2023.
[16] Butera, De Felice, Cini, and Alippi, “On the Regularization of Learnable Embeddings for Time Series Processing”, Preprint 2024.

39

Global and local models

Some empirical results

MODELS MetrLA PemsBAY CER-E AQI MetrLA PemsBAY CER-E AQI

Reference arch. Global models + Local node embeddings
RNN 3.54±.00 1.77±.00 4.57±.01 14.02±.04 3.15±.03 1.59±.00 4.22±.02 13.73±.04

GCRNN-IMP 3.35±.01 1.70±.01 4.44±.01 12.87±.02 3.10±.01 1.59±.00 4.18±.01 12.48±.03

RNN+IMP 3.34±.01 1.72±.00 4.39±.01 12.74±.02 3.08±.01 1.58±.00 4.12±.03 12.33±.02

GCRNN-AMP 3.22±.02 1.65±.00 4.57±.04 12.29±.02 3.07±.02 1.59±.00 4.17±.02 12.17±.05

RNN+AMP 3.24±.01 1.66±.00 4.31±.01 12.30±.02 3.06±.01 1.58±.01 4.13±.01 12.15±.02

Baseline arch. Original + Local node embeddings
DCRNN 3.22±.01 1.64±.00 4.28±.01 12.96±.03 3.07±.02 1.60±.00 4.13±.02 12.53±.02

GraphWaveNet 3.05±.03 1.56±.01 3.97±.01 12.08±.11 2.99±.02 1.58±.00 4.01±.01 11.81±.04

AGCRN 3.16±.01 1.61±.00 4.45±.01 13.33±.02 3.14±.00 1.62±.00 4.37±.02 13.28±.03

Table 1: MAE on benchmark datasets.
40

Global and local models

Transfer learning results

We consider datasets coming from four different traffic networks.

→ One of the networks is left out at training time and used for evaluating transferability.

RNN+IMP PEMS03 PEMS04 PEMS07 PEMS08

Fi
ne

-tu
ni

ng Global 15.30 ± 0.03 21.59 ± 0.11 23.82 ± 0.03 15.90 ± 0.07

Embeddings 14.64 ± 0.05 20.27 ± 0.11 22.23 ± 0.08 15.45 ± 0.06

– Variational 14.56 ± 0.03 20.19 ± 0.05 22.43 ± 0.02 15.41 ± 0.06

– Clustering 14.60 ± 0.02 19.91 ± 0.11 22.16 ± 0.07 15.41 ± 0.06

Zero-shot 18.20 ± 0.09 23.88 ± 0.08 32.76 ± 0.69 20.41 ± 0.07

Table 2: Transfer learning results (MAE) after fine-tuning on a week of data.

[15] Cini et al., “Taming Local Effects in Graph-based Spatiotemporal Forecasting”, NeurIPS 2023.

41

End of Part 1: what we have so far

1. We formalized the problem of processing correlated time
series.

2. Graph representations allows for modeling dependencies
among them.

3. We discussed forecasting problem and global/local deep
learning models for time series.

4. We saw approaches to building spatiotemporal graph
neural networks and the associated trade-offs.

STGNN

STGNN

STGNN

STGNN

STGNN

Before discussing challenges, we will look at software implementations of the above.

42

DEMO

Coding Spatiotemporal GNNs

Coding Spatiotemporal GNNs

tsl: PyTorch Spatiotemporal Library

tsl (Torch Spatiotemporal) is a python library built upon PyTorch and PyG to
accelerate research on neural spatiotemporal data processing methods, with a
focus on Graph Neural Networks.

[torch-spatiotemporal.readthedocs.io

§ github.com/TorchSpatiotemporal/tsl

. .

Notebook
Spatiotemporal Graph Neural Networks with tsl

Open in ColabOpen in Colab

[17] Cini and Marisca, Torch Spatiotemporal, https://github.com/TorchSpatiotemporal/tsl 2022.

43

https://torch-spatiotemporal.readthedocs.io/
https://pytorch.org/
https://pytorch-geometric.readthedocs.io/en/latest/
https://torch-spatiotemporal.readthedocs.io/
https://github.com/TorchSpatiotemporal/tsl
https://colab.research.google.com/drive/1F510uMFU1_j86R7u873lqZ4u3Oa-qC_L?usp=sharing
https://colab.research.google.com/drive/1F510uMFU1_j86R7u873lqZ4u3Oa-qC_L?usp=sharing
https://colab.research.google.com/drive/1F510uMFU1_j86R7u873lqZ4u3Oa-qC_L?usp=sharing

Part 2

Challenges

Challenges

• Scalability
How to deal with large collections of time series?

• Dealing with missing data
How to deal with missing observations within the time series?

• Latent graph learning
What to do when the underlying graph is not known?

• Model quality assessment
How to evaluate our graph-based model?

44

Scalability

Scalability

⌣ The scalability feature

Graph-based processing allows us to

⌣ learn a single inductive (global) model...

⌣ ...while conditioning on related time series
in a sparse fashion.

⌣ The cost of this operation reduces from
O
(
N2

)
toO

(
|Et|

)

45

Scalability

⌢ The scalability issue

Spatiotemporal data span – as the name suggests – two dimensions:

• the spatial dimension – the number of time series.

• the time dimension – the number of time steps per time series.

In the real world, dealing with high-frequency, large-scale time series data is quite common.
– E.g., smart cities, environmental monitoring, finance

⌢ A large amount of data needs to be processed at once.

⌢ In particular, to account for long-range spatiotemporal dependencies.

46

Scalability

Computational complexity of STGNNs

W : length of time series · N : number of nodes · |Et|: number of edges · L: number of MP layers

The computational complexity of T&S models is given by:

• node-wise temporal processing –O
(
WN

)
;

• L MP layers for each time step –O
(
WL|Et|

)
.

→ O
(
W

(
N + L|Et|

))
A first step toward improving scalability is represented by TTS models, which perform:

• node-wise temporal processing –O
(
WN

)
;

• L MP layers at the last time step –O
(
L|Et|

)
.

→ O
(
WN + L|Et|

)
STT models, instead, do not have computational advantages over T&S models.

47

Scalability

Graph subsampling

Computations can be reduced by training on subgraphs of the full network.

• sampling the K-th order neighborhood of a subset of nodes;

• rewiring the graph to reduce the total number of edges.

Mostly adapted from methods developed in static graph processing (e.g., [19], [20]).

⌢ Subsampling might break long-range spatiotemporal dependencies.

⌢ The learning signal may be noisy.

[18] Gandhi et al., “Spatio-Temporal Multi-graph Networks for Demand Forecasting in Online Marketplaces”, ECML-PKDD 2021.
[19] Hamilton et al., “Inductive representation learning on large graphs”, NeurIPS 2017.
[20] Rong et al., “DropEdge: Towards Deep Graph Convolutional Networks on Node Classification”, ICLR 2020.

48

Scalability

Pre-computation

Pre-processing methods (e.g., [21]) enable scalability to large graphs by:

• precomputing a representation for each node’s neighborhood ahead of training;

• processing the obtained node representations as if they were i.i.d. samples.

An extension to spatiotemporal data is given by SGP [22], which acts in 2 steps:

1. obtain a temporal encoding at each time step with a deep echo state network1;

2. propagate such encodings through the graph using powers of a graph shift operator.

[21] Frasca et al., “SIGN: Scalable inception graph neural networks” 2020.
[22] Cini et al., “Scalable Spatiotemporal Graph Neural Networks”, AAAI 2023.
[23] Liu et al., “Do we really need graph neural networks for traffic forecasting?” Preprint 2023.

1A randomized recurrent neural networks

49

Scalability

SGP: Scalable Graph Predictor [22]
Extracted representations can be sampled uniformly across time and space during training.

C
O
N
C
AT
EN
AT
E

Echo State Network

sp
ac

e

time

. . .

. . .

. . .

M
LP

⌣ The cost of a training step is independent of W,N and |Et|.
⌣ Performance matches state of the art.
⌢ More storage space is required – the number of extracted features is≫ dx.
⌢ More reliant on hyperparameter selection than end-to-end approaches.

[22] Cini et al., “Scalable Spatiotemporal Graph Neural Networks”, AAAI 2023.

50

Scalability

Hierarchical processing

We can reduce computational complexity by using coarser-grained representations of the input.

In space, this can be achieved through graph pooling [24].

⌣ Reduced number of operations to reach
the same receptive field.

⌢ Introduce bottlenecks in information
propagation.

Temporal Hierarchy

Spatial Hierarchy

[24] Grattarola et al., “Understanding Pooling in Graph Neural Networks” 2024.

51

Dealing with missing data

Dealing with missing data

The problem of missing data

So far, we assumed to deal with complete sequences.
– i.e., to have valid observations associated with each node (sensor) and time step.

However, time series collected by real-world sensor networks often have missing data, due to:

• faults, of either transient or permanent nature;

• asynchronicity among the time series;

• communication errors...

Most forecasting methods operate on complete sequences.
→ We need a way to impute, i.e., reconstruct, missing data.

52

Dealing with missing data

Time series imputation

Time series imputation (TSI)

Given a window of observations Xt:t+T , mask Mt:t+T , and covariates Ut:t+T , the goal is to estimate
the missing observations in the sequence Xt:t+T .

time

Xt:t+T

time

Mt:t+T Ut:t+T

Imputation

time

Xt:t+T

→We use a mask mi
t ∈ {0,1} to distinguish between missing (0) and valid (1) observations.

53

Dealing with missing data

Missing data types

We can categorize missing data patterns according to the conditional distribution p
(
mi

t |M≤t

)
.

• Point missing
p
(
mi

t = 0
)

is the same across nodes and time steps, i.e., RVs associated to each mi
t are iid.

p
(
mi

t

)
= B(η) ∀ i, t

• Block missing
p
(
mi

t = 0
)

is not independent from missing data at other nodes and/or time steps.

Temporal block missing p
(
mi

t |mi
t−1

)
̸= p

(
mi

t

)
Spatial block missing p

(
mi

t

∣∣ {mj
t

}j ̸=i
)
̸= p

(
mi

t

)
Spatiotemporal block missing p

(
mi

t

∣∣mi
t−1,

{
mj

t

}j ̸=i
)
̸= p

(
mi

t

)
54

Dealing with missing data

Optimization

Parameters θ can be learned by minimizing a loss function ℓ(· , ·) on valid observations in a training set:

θ̂ = argmin
θ

T∑
t=1

N∑
i=1

∥∥mi
t ⊙ ℓ

(
x̂i

t,x
i
t

)∥∥
1

∥mi
t∥1

.
← e.g., ℓ =

(
x̂i

t − xi
t

)2

For imputation, we mark some valid observations as missing with mask mi
t to obtain ground-truth labels:

θ̂ = argmin
θ

T∑
t=1

N∑
i=1

∥∥mi
t ⊙ ℓ

(
xi

t,x
i
t

)∥∥
1∥∥mi

t

∥∥
1

.

. Data where mi
t = 1 must not be used in the model to obtain the imputations.

55

Dealing with missing data

Deep learning for TSI

Besides standard statistical methods, deep learning approaches have become a popular alternative.
– In particular, autoregressive models (e.g., RNNs).

0

MUX
01

1 0

RNN RNNRNN RNN RNN

⌣ Effective in exploiting past (and future, with bidirectional models) node observations.

⌢ Struggle in capturing nonlinear space-time dependencies.

56

Dealing with missing data

Time series imputation + relational inductive biases

Again, we can use the available relational information to condition the model, i.e.,

xi
t+k ∼ p

(
xi

t+k |Xt:t+T ⊙Mt:t+T ,A
)

k ∈ [0, T)

time

Gt:t+T

Imputation
STGNN

time

Xt:t+T

57

Dealing with missing data

Graph Recurrent Imputation Network (GRIN)

Similarly to GCRNN for forecasting, we can integrate graph processing into the autoregressive approach for
imputation [25].

In these approaches, the distribution p
(
xi

t |X0:∞ ⊙M0:∞
)

is modeled into three independent steps:

Information from
previous observations.

p
(
xi

t |X<t ⊙M<t

)
Information from

subsequent observations.

p
(
xi

t |X>t ⊙M>t

)
Information from related
concurrent observations.

p
(
xi

t |
{
xj

t ⊙mj
t

}j ̸=i
)

Typically modeled by bidirectional autoregressive models. Enabled by message passing.

[25] Cini et al., “Filling the G_ap_s: Multivariate Time Series Imputation by Graph Neural Networks”, ICLR 2022.

58

Dealing with missing data

Imputation before forecasting

TSI is often used as a preprocessing step for a downstream task, e.g., forecasting.

time

Gt−W :t

Imputation
STGNN

time

Xt−W :t

Forecasting
STGNN

time

X̂t:t+H

⌢ Often necessary to use standard forecasting methods with irregular time series.

⌢ Might introduce biases due to errors in estimated values.

59

Dealing with missing data

Imputation in place of forecasting
Imputation methods can also be adapted to perform forecasting.

time

Gt−W :t Mt:t+H = 0

Imputation
STGNN

time

Xt:t+H

⌢ It is a workaround (this is not their purpose).

⌢ Might perform poorly due to the absence of values in the forecasting horizon.

60

Dealing with missing data

Forecasting from partial observations

A more direct approach: avoid the reconstruction step!
→ Design forecasting architecture to directly deal with irregular observations.

Benefits

⌣ Learn how to leverage only valid
observations specifically for the
task at hand.

⌣ Avoid the computational burden
of imputing missing values. time

Gt−W :t

Forecasting
STGNN

time

X̂t:t+H

[26] Zhang et al., “Graph-guided network for irregularly sampled multivariate time series”, ICLR 2022.
[27] Zhong et al., “Heterogeneous spatio-temporal graph convolution network for traffic forecasting with missing values”, IEEE ICDCS 2021.
[28] Marisca et al., “Graph-based Forecasting with Missing Data through Spatiotemporal Downsampling”, ICML 2024.

61

Dealing with missing data

Virtual sensing

The practice of estimating unmeasured states using models and existing observations.

The power of graphs:

⌣ The relational processing allows us to condition
estimates on data close in space.

⌣ The inductive property of MP allows us to
handle new nodes and edges.

⌣ Useful in applications where sensing has a cost.
time

?

[29] Wu et al., “Inductive Graph Neural Networks for Spatiotemporal Kriging”, AAAI 2021.
[30] De Felice et al., “Graph-Based Virtual Sensing from Sparse and Partial Multivariate Observations”, ICLR 2024.

62

Dealing with missing data

Graph imputation for virtual sensing

� Add a fictitious node with no data and let the model infer the corresponding time series.

Clearly, several assumptions are needed

• high degree of homogeneity of sensors,

• capability to reconstruct from observations at
neighboring sensors,

• and many more...

Two virtual sensors for air quality. (from [25])

100

200

PM
2.

5
(µ

g/
m

3)

Truth GRIN

Jun−19 12 : 00 Jun−20 12 : 00
2014−Jun−20

50

100

150

PM
2.

5
(µ

g/
m

3)

no
.1

01
4

no
.1

03
1

[12] Marisca et al., “Learning to Reconstruct Missing Data from Spatiotemporal Graphs with Sparse Observations”, NeurIPS 2022.
[25] Cini et al., “Filling the G_ap_s: Multivariate Time Series Imputation by Graph Neural Networks”, ICLR 2022.

63

Latent graph learning

Latent graph learning

Learning an adjacency matrix
⌢ Relational information is not always (or only partially) available,
⌢ or might be ineffective in capturing spatial dynamics.

⌣ Relational architectural biases can nonetheless be exploited
→ extract a graph from the time series or node attributes

X≤t

Graph extraction

Ã

• When possible, the learned graph should be sparse.
• It can be interpreted as regularizing a spatial attention operator.
• This task is found under different names:

graph structure learning, latent graph learning, graph inference...
64

Latent graph learning

Time-series similarities

Probably, the simplest approach to extract a graph from the time series
is by computing time series similarity scores.

• Pearson correlation

• Correntropy

• Granger causality

• Kernels for time series

• . . .

→ Thresholding might be necessary to obtain binary and sparse graphs.

65

Latent graph learning

Inferring latent structures from time series

Model the graph as a latent variable determining the realizations of the time series.

• They rely on assumptions, such as of signal smoothness and of a diffusion process.

Dedicated loss functions are formulated and minimized, e.g.,

trace(X⊤LX) =
1

2

∑
ij

Ai,j∥Xi −Xj∥22

constraining L (or A) to be a Laplacian (adjacency matrix) and promoting sparsity.

→ These approaches are commonly derived from a graph signal processing point of view.

[31] Dong et al., “Learning Laplacian matrix in smooth graph signal representations”, IEEE TSP 2016.
[32] Mateos et al., “Connecting the dots: Identifying network structure via graph signal processing”, IEEE SP Mag 2019.

66

Latent graph learning

Task-oriented latent graph learning

An integrated approach: learn the relations end-to-end with the downstream task
→ e.g., by minimizing the forecasting error (MAE, MSE...).

Two different formulations:

1. learning directly an adjacency matrix A ∈ RN×N ;

2. learning a probability distribution over graphs pΦ generating A (often∈ {0, 1}N×N).

. One key challenge is keeping both A and the subsequent computations sparse.
→ non-trivial with gradient-based optimization.

67

Latent graph learning

Direct approach

A direct approach consists in learning Ã as function ξ(·) of edge scores
Φ ∈ RN×N as

Ã = ξ (Φ)

Edge scores Φ

• can be a table of learnable model parameters,

• obtained as a function of the inputs and/or other parameters:

Φ = Φ(X, Φ̃).

Function ξ(·) can enforce structures on Ã, like,

→ make Ã binary, a k-NN graph, a tree...

68

Latent graph learning

Edge score factorization

The number of possible edge scores is quadratic in the number of nodes (Φ ∈ RN×N)
→ a common approach is to factorize Φ:

Ã = ξ (Φ) Φ = ZsZ
⊤
t

with

• Zs ∈ RN×d source node embeddings

• Zt ∈ RN×d target node embeddings

Zs and Zt can be learned as tables of (local) parameters or as a function of the input window.

[11] Wu et al., “Graph wavenet for deep spatial-temporal graph modeling”, IJCAI 2019.

69

Latent graph learning

Pro & Cons of the direct approach

⌣ Easy to implement.

⌣ Many possible parametrizations.

⌣ Edge scores are usually easy to learn end-to-end.

⌢ It often results in dense computations withO(N2) complexity.

⌢ Sparsifying A results in sparse gradients.

⌢ Encoding prior structural information requires smart parametrizations.

70

Latent graph learning

Probabilistic methods
In this context, probabilistic methods aim at learning a parametric distribution pΦ for A.

• Different parametrizations of pΦ allow for embedding graph structural priors on the sampled graphs,
e.g., edge density, bound node degrees.

Graphs of independent edges

For every edge (i, j)

Ai,j ∼ Bernoulli(σ(Φi,j)).

Fixed-degree graphs

For each node i, sample w/o replacement k nodes from

Categorical (SoftMax(Φi,1, . . . ,Φi,N)) .

• As seen before, Φ can be factorized and pΦ made input dependent, e.g.,

Φ = ξ
(
ZsZ

⊤
t

)
, A ∼ pΦ (A|X<t,U<t,V) .

[33] Kazi et al., “Differentiable graph module (dgm) for graph convolutional networks”, IEEE TPAMI 2022.
[34] Cini et al., “Sparse graph learning from spatiotemporal time series”, JMLR 2023.

71

Latent graph learning

Learning graph distributions

Training losses average over all graphs according to pΦ, e.g., based on point predictions

L(Φ) = EA∼pΦ

[
ℓ
(
X̂t:t+H ,Xt:t+H

)]
, L(Φ) = ℓ

(
EA∼pΦ

[
X̂t:t+H

]
,Xt:t+H

)
,

where Xt:t+H = F(Xt−W :t,A; θ).

More generally, comparing predictive distributions by means of a divergence measure ∆

L(Φ) = ∆
(
pΦ(X̂t:t+H), p(Xt:t+H)

)
.

. Gradient-based optimization requires computing∇ΦL(Φ),
→ i.e., differentiating w.r.t. the parameters of the integrated distribution.

⌢ Analytical computations is often unfeasible;

⌢ Monte Carlo approximations require care.

72

Latent graph learning

Monte Carlo gradient estimators
� One approach is to reparametrize Ã ∼ pΦ(A) as: Ã = g (Φ, ε) , ε ∼ p(ε)

decoupling parameters Φ from the random component ε: ∇ΦL(Φ) = Eε

[
∇Φℓ(X̂,X)

]
.

⌣ Practical and easy to implement,
⌢ rely on continuous relaxations and make subsequent computations scale withO(N2).

� Conversely, score-function (SF) gradient estimators rely on the relation

∇ΦEpΦ

[
ℓ(X̂,X)

]
= EpΦ

[
ℓ(X̂,X)∇Φ log pΦ

]
⌢ suffer from high variance (use variance reduction techniques),
⌣ allow to keep computations sparse through the model.

→we can use Monte Carlo estimator.

[35] Kipf et al., “Neural relational inference for interacting systems”, ICML 2018.
[34] Cini et al., “Sparse graph learning from spatiotemporal time series”, JMLR 2023.

73

Latent graph learning

Computational efficiency

0 200 400 600
Number of nodes

0

5

10

15

20

25

G
PU

m
em

.(
G

B
)

OOM

Score-based

200 400 600
Number of nodes

1

2

3

4

5

s/
ep

oc
h

(s
)

Straight-through

• Score-function
• Pathwise

With score-based gradient estimators∇ΦL(Φ) = EA∼pΦ

[
ℓ(X̂,X)∇Φ log pΦ(A)

]
.

⌣ They are computationally efficient as∇Φ is computed with respect to log pΦ(A).
• do not rely on continuous relaxation of discrete random variables;
• allow for sparse message passing to compute X̂ (and, in turn, of ℓ(X̂,X)) by rely on sparse matrices A.

⌢ They can be sample inefficient due to the high variance of the gradient estimates.
74

Latent graph learning

Uncertainty quantification
While probabilistic models have been used to enable learning of discrete variables (graph edges), the
associated edge probabilities can carry information about the relevance of the associated connections.

→ It enables some degree of explainability and better informed decision-making.

. Assessing the calibration of latent variables is hard on real data.

→ This is due to their latent nature, for which observations are not available.

� Studies provide some learning guarantees, e.g.,

Minimizing appropriate divergence measures ∆
(
p(X), pΦ(X̂)

)
of the data and pre-

dictive distributions p(X), pΦ(X̂), respectively, enables calibration of the pΦ(A).

[36] Gray et al., “Bayesian inference of network structure from information cascades”, IEEE TSIPN 2020.
[37] Manenti et al., Learning Latent Graph Structures and Their Uncertainty, Preprint 2024.

75

Model quality assessment

Model quality assessment

Questions to answer

Consider a predictorF trained to solve a time-series forecasting problem.

1. Is the predictor optimal for the problem at hand?

2. Where does the predictor appear sub-optimal?

3. How can we improve the predictor?

Remark: Multiple optimality criteria can be considered.

W Relational inductive biases can help us here too.

76

Model quality assessment

Performance at task

Given two predictorsFa,Fb and performance metric M (e.g., MAE, MSE).

• we considerFa better thanFb if M(Fa) is statistically better than M(Fb).

• we considerFa optimal if there is no other modelFb better thanFa.

Can we further improve over the best model so farFa?

→ Either we find a new modelF∗ better thanFa

→ or we need prior knowledge about the modeled system.

Model M

Fa 0.145±0.002

Fb 0.176±0.005

...
Fn 0.158±0.004

F∗ 0.139±0.001

77

Model quality assessment

Residual correlation analysis
Studying the correlation between prediction residuals ri

t
.
= xi

t:t+H − x̂i
t:t+H allows for testing model

optimality.

If residuals are dependent
=⇒ there is information that the model hasn’t captured

=⇒ model predictions can be improved.

Remarks: Residual correlation analysis

⌣ Is independent of specific performance measures.

⌢ Does not quantify how much a model can improve w.r.t. a specific performance metric.

⌣ Does not rely on comparisons with other models.

Research focused mainly on either serial correlation [38]–[40] or spatial correlation [41], [42].

78

Model quality assessment

AZ-Whiteness test: a spatio-temporal test

The test is defined by statistic

C({r}) =
∑
t

∑
(i,j)∈Et

wijt sgn(⟨ri
t, r

j
t ⟩)︸ ︷︷ ︸

spatial edge

+
∑
t

∑
i

wit sgn(⟨ri
t, r

i
t+1⟩)︸ ︷︷ ︸

temporal edge

→ N (0, 1)

⌣ distribution-free and residuals can be non-identically distributed.

⌣ computation is linear in the number of edges and time steps.

[43] Zambon et al., “AZ-whiteness Test: A Test for Signal Uncorrelation on Spatio-Temporal Graphs”, NeurIPS 2022.

79

Model quality assessment

Where can we improve?
Analyzing the AZ-whiteness test statistic computed on subgraphs of the spatio-temporal graph allows for
discovering insightful correlation patterns.

Spatial (or temporal) edges Edges related to a node

Edges related to a time step Edges related to a node

[44] Zambon et al., “Where and How to Improve Graph-based Spatio-temporal Predictors” 2023.

80

Future directions

Future directions

Hierarchical processing

time

⌢ Standard STGNNs operate at a fixed spatiotemporal scale.
� Combine hierarchical and graph-based representations.
⌣ Exploit higher-order dependencies by operating on hierarchical representations of the input.
⌣ Can also be used for hierarchical forecasting and to obtain reconciled predictions.

[45] Yu et al., “ST-Unet: A spatio-temporal U-network for graph-structured time series modeling” 2019.
[46] Cini et al., “Graph-based Time Series Clustering for End-to-End Hierarchical Forecasting”, ICML 2024.
[28] Marisca et al., “Graph-based Forecasting with Missing Data through Spatiotemporal Downsampling”, ICML 2024. 81

Future directions

State-space models

{
ht = fST(ht−1,xt−1,ηt−1)

yt = fRO(ht,νt)

• Inputs xt, states ht, and outputs yt are different
attributed graphs.

• ηt,νt are noise terms at the node/edge level.

Input graph State graph Output graph

[47] Rangapuram et al., “Deep State Space Models for Time Series Forecasting”, NeurIPS 2018.
[48] Zambon et al., Graph State-Space Models, Preprint 2023.
[49] Alippi et al., Graph Kalman Filters, Preprint 2023.
[50] Buchnik et al., “GSP-kalmannet: Tracking graph signals via neural-aided Kalman filtering”, IEEE TSP 2024.
[51] Chouzenoux et al., “Sparse graphical linear dynamical systems”, JMLR 2024.

82

Future directions

Inductive learning

In real-world applications, one often needs to

• operate under changes in the network connectivity

• make predictions for newly added nodes

• transfer the model to different sensor networks (collections of time
series)

Useful in several tasks, like, forecasting, missing data imputation, and virtual sensing.

. Performance can easily degrade if the data distribution of target nodes
• deviates from that at training nodes
• changes over time.

[15] Cini et al., “Taming Local Effects in Graph-based Spatiotemporal Forecasting”, NeurIPS 2023.
[52] Yin et al., “Nodetrans: A graph transfer learning approach for traffic prediction”, Preprint 2022.
[53] Prabowo et al., “Traffic forecasting on new roads using spatial contrastive pre-training (SCPT)” 2024. 83

Future directions

Benchmarks

Open datasets

In line with OGB [54], TGB [55], TGB 2.0 [56].

• Energy analytics (CER-E, PV-US) [22]

• Traffic flow (LargeST) [57]

• ...

Software
Standard model evaluation platforms

• Torch SpatioTemporal [17]

• BasicTS [58]

• ...

[22] Cini et al., “Scalable Spatiotemporal Graph Neural Networks”, AAAI 2023.
[57] Liu et al., “Largest: A benchmark dataset for large-scale traffic forecasting”, NeurIPS (D&B) 2024.
[17] Cini et al., Torch Spatiotemporal, https://github.com/TorchSpatiotemporal/tsl 2022.
[58] Shao et al., “Exploring Progress in Multivariate Time Series Forecasting: Comprehensive Benchmarking and Heterogeneity Analysis”,
IEEE TKDE 2024.

84

Conclusions

Conclusions

Some Takeaways

Deep Learning
for time series + Deep Learning

on graphs

W Relational inductive biases allow for exploiting dependencies among the time series,

⌣ ...while sharing most of the model parameters,

⌣ ...and overcoming limits due to irregularities in time and space.

� Whenever possible, global-local models are a safe starting point.

Challenges. Scalability • Missing data • Latent graph learning • Model quality assessment

Resources. ¸ Tutorial paper [3] • § Open-source library [17]

[3] Cini, Marisca, Zambon, and Alippi, “Graph Deep Learning for Time Series Forecasting”, Preprint 2023.
[17] Cini and Marisca, Torch Spatiotemporal, https://github.com/TorchSpatiotemporal/tsl 2022.

85

https://arxiv.org/abs/2310.15978
https://github.com/TorchSpatiotemporal/tsl

Andrea Cini Ivan Marisca Daniele Zambon

Graph Machine Learning Group
gmlg.ch

https://gmlg.ch/

THE END
Questions?

References i

[1] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, “DeepAR: Probabilistic forecasting with
autoregressive recurrent networks,” International Journal of Forecasting, vol. 36, no. 3, pp. 1181–1191,
2020.

[2] K. Benidis, S. S. Rangapuram, V. Flunkert, et al., “Deep learning for time series forecasting:
Tutorial and literature survey,” ACM Comput. Surv., vol. 55, no. 6, Dec. 2022, ISSN: 0360-0300. DOI:
10.1145/3533382. [Online]. Available: https://doi.org/10.1145/3533382.

[3] A. Cini, I. Marisca, D. Zambon, and C. Alippi, “Graph deep learning for time series forecasting,” arXiv
preprint arXiv:2310.15978, 2023.

[4] P. Montero-Manso and R. J. Hyndman, “Principles and algorithms for forecasting groups of time
series: Locality and globality,” International Journal of Forecasting, vol. 37, no. 4, pp. 1632–1653, 2021.

[5] R. Sen, H.-F. Yu, and I. S. Dhillon, “Think globally, act locally: A deep neural network approach to
high-dimensional time series forecasting,” Advances in Neural Information Processing Systems, vol. 32,
2019.

i

https://doi.org/10.1145/3533382
https://doi.org/10.1145/3533382

References ii
[6] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message passing for

quantum chemistry,” in International conference on machine learning, PMLR, 2017, pp. 1263–1272.

[7] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural
networks on sequence modeling,” arXiv preprint arXiv:1412.3555, 2014.

[8] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, “Structured sequence modeling with graph
convolutional recurrent networks,” in International Conference on Neural Information Processing, Springer,
2018, pp. 362–373.

[9] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural network: Data-driven
traffic forecasting,” in International Conference on Learning Representations, 2018.

[10] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional networks: A deep learning
framework for traffic forecasting,” in Proceedings of the 27th International Joint Conference on Artificial
Intelligence, 2018, pp. 3634–3640.

[11] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet for deep spatial-temporal graph
modeling,” in Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019,
pp. 1907–1913.

ii

References iii
[12] I. Marisca, A. Cini, and C. Alippi, “Learning to reconstruct missing data from spatiotemporal

graphs with sparse observations,” in Advances in Neural Information Processing Systems, 2022.

[13] Z. Wu, D. Zheng, S. Pan, Q. Gan, G. Long, and G. Karypis, “Traversenet: Unifying space and time in
message passing for traffic forecasting,” IEEE Transactions on Neural Networks and Learning Systems, 2022.

[14] M. Sabbaqi and E. Isufi, “Graph-time convolutional neural networks: Architecture and
theoretical analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 12,
pp. 14 625–14 638, Dec. 2023, ISSN: 1939-3539. DOI: 10.1109/TPAMI.2023.3311912.

[15] A. Cini, I. Marisca, D. Zambon, and C. Alippi, “Taming local effects in graph-based spatiotemporal
forecasting,” arXiv preprint arXiv:2302.04071, 2023.

[16] L. Butera, G. De Felice, A. Cini, and C. Alippi, “On the regularization of learnable embeddings for
time series processing,” arXiv preprint arXiv:2410.14630, 2024.

[17] A. Cini and I. Marisca, Torch Spatiotemporal, Mar. 2022. [Online]. Available:
https://github.com/TorchSpatiotemporal/tsl.

iii

https://doi.org/10.1109/TPAMI.2023.3311912
https://github.com/TorchSpatiotemporal/tsl

References iv
[18] A. Gandhi, Aakanksha, S. Kaveri, and V. Chaoji, “Spatio-temporal multi-graph networks for

demand forecasting in online marketplaces,” in Machine Learning and Knowledge Discovery in Databases.
Applied Data Science Track: European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021,
Proceedings, Part IV, 2021, pp. 187–203, ISBN: 978-3-030-86513-9. DOI: 10.1007/978-3-030-86514-6_12.
[Online]. Available: https://doi.org/10.1007/978-3-030-86514-6_12.

[19] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,”
Advances in neural information processing systems, vol. 30, 2017.

[20] Y. Rong, W. Huang, T. Xu, and J. Huang, “Dropedge: Towards deep graph convolutional networks
on node classification,” in International Conference on Learning Representations, 2020.

[21] F. Frasca, E. Rossi, D. Eynard, B. Chamberlain, M. Bronstein, and F. Monti, “SIGN: Scalable inception
graph neural networks,” arXiv preprint arXiv:2004.11198, 2020.

[22] A. Cini, I. Marisca, F. M. Bianchi, and C. Alippi, “Scalable spatiotemporal graph neural networks,”
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 6, pp. 7218–7226, Jun. 2023. DOI:
10.1609/aaai.v37i6.25880.

iv

https://doi.org/10.1007/978-3-030-86514-6_12
https://doi.org/10.1007/978-3-030-86514-6_12
https://doi.org/10.1609/aaai.v37i6.25880

References v
[23] X. Liu, Y. Liang, C. Huang, et al., “Do we really need graph neural networks for traffic forecasting?”

arXiv preprint arXiv:2301.12603, 2023.

[24] D. Grattarola, D. Zambon, F. M. Bianchi, and C. Alippi, “Understanding pooling in graph neural
networks,” IEEE Transactions on Neural Networks and Learning Systems, vol. 35, no. 2, pp. 2708–2718, 2024.

[25] A. Cini, I. Marisca, and C. Alippi, “Filling the g_ap_s: Multivariate time series imputation by graph
neural networks,” in International Conference on Learning Representations, 2022. [Online]. Available:
https://openreview.net/forum?id=kOu3-S3wJ7.

[26] X. Zhang, M. Zeman, T. Tsiligkaridis, and M. Zitnik, “Graph-guided network for irregularly sampled
multivariate time series,”, 2022.

[27] W. Zhong, Q. Suo, X. Jia, A. Zhang, and L. Su, “Heterogeneous spatio-temporal graph convolution
network for traffic forecasting with missing values,” in 2021 IEEE 41st International Conference on
Distributed Computing Systems (ICDCS), IEEE, 2021, pp. 707–717.

[28] I. Marisca, C. Alippi, and F. M. Bianchi, “Graph-based forecasting with missing data through
spatiotemporal downsampling,” in Proceedings of the 41st International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, vol. 235, PMLR, 2024, pp. 34 846–34 865.

v

https://openreview.net/forum?id=kOu3-S3wJ7

References vi
[29] Y. Wu, D. Zhuang, A. Labbe, and L. Sun, “Inductive Graph Neural Networks for Spatiotemporal

Kriging,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, 2021, pp. 4478–4485.

[30] G. De Felice, A. Cini, D. Zambon, V. Gusev, and C. Alippi, “Graph-based Virtual Sensing from Sparse
and Partial Multivariate Observations,” in The Twelfth International Conference on Learning
Representations, 2024. [Online]. Available: https://openreview.net/forum?id=CAqdG2dy5s.

[31] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning laplacian matrix in smooth graph
signal representations,” IEEE Transactions on Signal Processing, vol. 64, no. 23, pp. 6160–6173, 2016.

[32] G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro, “Connecting the dots: Identifying network
structure via graph signal processing,” IEEE Signal Processing Magazine, vol. 36, no. 3, pp. 16–43, 2019.

[33] A. Kazi, L. Cosmo, S.-A. Ahmadi, N. Navab, and M. M. Bronstein, “Differentiable graph module (dgm)
for graph convolutional networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45,
no. 2, pp. 1606–1617, 2022.

[34] A. Cini, D. Zambon, and C. Alippi, “Sparse graph learning from spatiotemporal time series,” Journal
of Machine Learning Research, vol. 24, no. 242, pp. 1–36, 2023.

vi

https://openreview.net/forum?id=CAqdG2dy5s

References vii
[35] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel, “Neural relational inference for interacting

systems,” in International conference on machine learning, PMLR, 2018, pp. 2688–2697.

[36] C. Gray, L. Mitchell, and M. Roughan, “Bayesian inference of network structure from information
cascades,” IEEE Transactions on Signal and Information Processing over Networks, vol. 6, pp. 371–381, 2020.

[37] A. Manenti, D. Zambon, and C. Alippi, Learning Latent Graph Structures and their Uncertainty, May
2024.

[38] J. Hosking, “Equivalent Forms of the Multivariate Portmanteau Statistic,” Journal of the Royal
Statistical Society: Series B (Methodological), vol. 43, no. 2, pp. 261–262, 1981.

[39] Z. Li, C. Lam, J. Yao, and Q. Yao, “On Testing for High-Dimensional White Noise,” The Annals of
Statistics, vol. 47, no. 6, pp. 3382–3412, 2019.

[40] A. Bose and W. Hachem, “A Whiteness Test Based on the Spectral Measure of Large
Non-Hermitian Random Matrices,” in ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), IEEE, 2020, pp. 8768–8771.

[41] P. A. P. Moran, “Notes on Continuous Stochastic Phenomena,” Biometrika, vol. 37, no. 1/2, pp. 17–23,
1950, ISSN: 0006-3444. DOI: 10.2307/2332142.

vii

https://doi.org/10.2307/2332142

References viii
[42] A. D. Cliff and K. Ord, “Spatial Autocorrelation: A Review of Existing and New Measures with

Applications,” Economic Geography, vol. 46, pp. 269–292, 1970, ISSN: 0013-0095. DOI: 10.2307/143144.

[43] D. Zambon and C. Alippi, “AZ-whiteness test: A test for signal uncorrelation on spatio-temporal
graphs,” in Advances in Neural Information Processing Systems, A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho,
Eds., 2022.

[44] D. Zambon and C. Alippi, “Where and how to improve graph-based spatio-temporal predictors,”
arXiv preprint arXiv:2302.01701, 2023.

[45] B. Yu, H. Yin, and Z. Zhu, “ST-Unet: A spatio-temporal U-network for graph-structured time series
modeling,” arXiv preprint arXiv:1903.05631, 2019.

[46] A. Cini, D. Mandic, and C. Alippi, “Graph-based Time Series Clustering for End-to-End Hierarchical
Forecasting,” International Conference on Machine Learning, 2024.

[47] S. S. Rangapuram, M. W. Seeger, J. Gasthaus, L. Stella, Y. Wang, and T. Januschowski, “Deep State
Space Models for Time Series Forecasting,” in Advances in Neural Information Processing Systems, vol. 31,
Curran Associates, Inc., 2018.

viii

https://doi.org/10.2307/143144

References ix
[48] D. Zambon, A. Cini, L. Livi, and C. Alippi, Graph state-space models, Jan. 2023. DOI:

10.48550/arXiv.2301.01741.

[49] C. Alippi and D. Zambon, Graph Kalman Filters, Mar. 2023. DOI: 10.48550/arXiv.2303.12021.

[50] I. Buchnik, G. Sagi, N. Leinwand, Y. Loya, N. Shlezinger, and T. Routtenberg, “Gsp-kalmannet:
Tracking graph signals via neural-aided kalman filtering,” IEEE Transactions on Signal Processing, 2024.

[51] E. Chouzenoux and V. Elvira, “Sparse graphical linear dynamical systems,” Journal of Machine
Learning Research, vol. 25, no. 223, pp. 1–53, 2024.

[52] X. Yin, F. Li, Y. Shen, H. Qi, and B. Yin, “Nodetrans: A graph transfer learning approach for traffic
prediction,” arXiv preprint arXiv:2207.01301, 2022.

[53] A. Prabowo, H. Xue, W. Shao, P. Koniusz, and F. D. Salim, “Traffic forecasting on new roads using
spatial contrastive pre-training (scpt),” Data Mining and Knowledge Discovery, vol. 38, no. 3, pp. 913–937,
2024.

ix

https://doi.org/10.48550/arXiv.2301.01741
https://doi.org/10.48550/arXiv.2303.12021

References x
[54] W. Hu, M. Fey, M. Zitnik, et al., “Open graph benchmark: Datasets for machine learning on

graphs,” in Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin, Eds., vol. 33, Curran Associates, Inc., 2020, pp. 22 118–22 133. [Online]. Available: https:
//proceedings.neurips.cc/paper_files/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-
Paper.pdf.

[55] S. Huang, F. Poursafaei, J. Danovitch, et al., “Temporal graph benchmark for machine learning on
temporal graphs,” in Advances in Neural Information Processing Systems, A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine, Eds., vol. 36, Curran Associates, Inc., 2023, pp. 2056–2073. [Online]. Available:
https:
//proceedings.neurips.cc/paper_files/paper/2023/file/066b98e63313162f6562b35962671288-
Paper-Datasets_and_Benchmarks.pdf.

[56] J. Gastinger, S. Huang, M. Galkin, et al., “Tgb 2.0: A benchmark for learning on temporal
knowledge graphs and heterogeneous graphs,” in Advances in Neural Information Processing Systems,
2024.

[57] X. Liu, Y. Xia, Y. Liang, et al., “Largest: A benchmark dataset for large-scale traffic forecasting,”
Advances in Neural Information Processing Systems, vol. 36, 2024.

x

https://proceedings.neurips.cc/paper_files/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/066b98e63313162f6562b35962671288-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/066b98e63313162f6562b35962671288-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/066b98e63313162f6562b35962671288-Paper-Datasets_and_Benchmarks.pdf

References xi
[58] Z. Shao, F. Wang, Y. Xu, et al., “Exploring progress in multivariate time series forecasting:

Comprehensive benchmarking and heterogeneity analysis,” IEEE Transactions on Knowledge and Data
Engineering, pp. 1–14, 2024. DOI: 10.1109/TKDE.2024.3484454.

xi

https://doi.org/10.1109/TKDE.2024.3484454

	Introduction
	Correlated time series
	Forecasting
	Graph-based representation
	Architectures

	Global and local models
	
	Coding Spatiotemporal GNNs
	
	Scalability
	Dealing with missing data
	Latent graph learning
	Model quality assessment
	Future directions
	Conclusions
	Appendix

