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Deep learning for time series forecasting

The standard deep learning approach to time series forecasting consists in
training a single neural network on a collection of time series.

• Each time series is treated independently from the others.
• A single set of shared learnable parameters is used to predict each time series.
• Resulting models are effective and efficient.

. Dependencies across time series are often discarded.

[1] K. Benidis et al., “Deep Learning for Time Series Forecasting: Tutorial and Literature Survey”, ACM CS 2022.
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Relational inductive biases

One way out is to embed such relational structure as an architectural bias into the processing.

Graph neural networks provide appropriate neural operators.

• Message-passing blocks allow for localizing the predictions
→ conditioning on observations at related time series (neighboring nodes).

• Parameters are shared and the model can operate on arbitrary sets of time series.

[2] D. Bacciu et al., “A gentle introduction to deep learning for graphs”, NN 2020.
[3] M. M. Bronstein et al., “Geometric deep learning: Grids, groups, graphs, geodesics, and gauges” 2021.
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What this tutorial is about

This tutorial aims at merging two active and prominent research fields:

1. deep learning for time series and

2. deep learning on graphs.

• We provide a unified exposition of the recent advancements in graph-based time series
processing, highlighting challenges and pitfalls.

• We offer researchers and practitioners a complete toolset of methodological guidelines,
best practices, and software to exploit such framework in real-world problems.

A reference paper and Python notebook complement this presentation.

[4] A. Cini et al., “Graph Deep Learning for Time Series Forecasting: A Comprehensive Methodological Framework” 2023.
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Tutorial outline

Part 1 Part 2
1.1) Spatiotemporal time series 2.1) Latent graph learning

1.2) Spatiotemporal GNNs 2.2) Learning in non-stationary environments

1.3) Global and local models 2.3) Scalability

1.4) Model quality assessment 2.4) Dealing with missing data

Ð Software demo

� Conclusions
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Part 1

Graph-based Processing of
Spatiotemporal Time series



Spatiotemporal time series



Spatiotemporal time series

Collections of time series

We consider a set of N correlated time series, where each i-th time series is associated with:

• an observation vector xi
t ∈ Rdx at each time step t;

• a vector of exogenous variable ui
t ∈ Rdu at each time step t;

• a vector of static (time-independent) attributes vi ∈ Rdv .

time time

 

Capital letters denote the stacked representations encompassing the N time series in the
collection, e.g., Xt ∈ RN×dx , Ut ∈ RN×du .

[4] A. Cini et al., “Graph Deep Learning for Time Series Forecasting: A Comprehensive Methodological Framework” 2023.
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Spatiotemporal time series

Correlated time series

We assume a time-invariant stochastic process

xi
t ∼ pi

(
xi
t

∣∣X<t,U≤t,V
)

generating the data xi
t for all i = 1 . . . N and t ∈ N.

Note that the time series:

• can be generated by different processes,

• can depend on each other,
• are assumed

homogenous, synchronous, regularly sampled.

time

Notation:

Xt:t+T = [Xt, · · · ,Xt+T−1]

X<t = [X0, · · · ,Xt−2,Xt−1]

→ These assumptions can be relaxed, as we will discuss in the 2nd part.
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Spatiotemporal time series

Relational information

We assume the existence of functional dependencies between
the time series.

→ e.g., forecasts for one time series can be improved by
accounting for the past values of other time series. time

We model pairwise relationships existing at time step t with
adjacency matrix At ∈ {0, 1}N×N .
• At can be asymmetric and dynamic (can vary with t).

→ We call spatial the dimension spanning the time series collection.
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Spatiotemporal time series

Relational information with attributes

Optional edge attributes eijt ∈ Rde can be associated to each non-zero entry of At.

The set of attributed edges encoding all the
available relational information is denoted by

Et .
= {⟨(i, j), eijt ⟩ | ∀i, j : At[i, j] ̸= 0}.

→ For many applications, At changes slowly over time and can be considered as constant
within a short window of observations.
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Spatiotemporal time series

Spatiotemporal time series

 

time

We use the terms node and sensor to indicate the N entities generating the time series.
→ We refer to the node set together with the relational information as sensor network.

The tuple Gt
.
= ⟨Xt,Ut, Et,V ⟩ contain all the available information associated with time step t.
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Spatiotemporal time series

Example: Traffic monitoring system

Consider a sensor network monitoring the speed of vehicles at crossroads.

time

• X<t collects past traffic speed measurements.
• Ut stores identifiers for time-of-the-day and day-of-the-week.
• V collects static sensor’s features, e.g., type or number of lanes of the monitored road.
• E can be obtained by considering the road network.

– Road closures and traffic diversions can be accounted for with a dynamic topology Et.
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Spatiotemporal time series

Time series forecasting

Multi-step time-series forecasting

Given a window of W ≥ 1 past observations

Xt−W :t = [Xt−W , . . . ,Xt−1],

predict H ≥ 1 future observations
xi
t+h, i = 1 · · ·N, h = 1 · · ·H.

time

In particular, we are interested in learning a parametric model pθ approximating the unknown
data distribution p

pθ
(
xi
t+h

∣∣Xt−W :t,Ut−W :t+h,V
)
≈ pi

(
xi
t+h

∣∣X<t,U≤t+h,V
)
.

• θ is the model parameter vector.
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Spatiotemporal time series

Time series forecasting + relational inductive biases

Condition the model on the relational information Et−W :t

pθ
(
xi
t+h

∣∣Gt−W :t,Ut−W :t+h,V
)

time

Gt−W :t

Forecasts

time

Xt:t+H

W The conditioning on the sequence of attributed graphs acts as a regularization to localize
predictions w.r.t. the neighborhood of each node.
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Spatiotemporal time series

Point forecasts

For simplicity, we focus here on point forecasts, rather than the modeling of full data
distributions p, and consider predictive model

x̂i
t+h = F (Gt−W :t,Ut:t+h;θ)

where x̂i
t+h approximates, e.g., Ep

[
xi
t+h

]
.

Parameters θ can be learned by minimizing a cost function ℓ( · , · ) (e.g., MSE) on a training set

θ̂ = argmin
θ

1

NT

T∑
t=1

ℓ
(
X̂t:t+H ,Xt:t+H

)
= argmin

θ

1

NT

T∑
t=1

∥∥∥Xt:t+H − X̂t:t+H

∥∥∥2
2
.
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Graph Neural Networks



Spatiotemporal Graph Neural Networks

Spatiotemporal Graph Neural Networks

We call Spatiotemporal Graph Neural Network (STGNN) a neural network exploiting both
temporal and spatial relations of the input spatiotemporal time series.

time

G<t

t

STGNN Predictor

time

X̂t:t+H

We focus on models based on message passing.
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Spatiotemporal Graph Neural Networks

Message-passing neural networks

To process the spatial dimension, we rely on the message-passing (MP) framework

hi,l+1 = UPl
(
hi,l, AGGR

j∈N (i)

{
MSGl

(
hi,l,hj,l, eji

)})
, (1)

Where:

• MSGl( · ) is the message function, e.g., implemented by an MLP.

• AGGR{ · } is the permutation invariant aggregation function.

• UPl( · ) is the update function, e.g., implemented by an MLP.

Aggregation is performed over N (i), i.e., the set of neighbors of node i.

[5] J. Gilmer et al., “Neural message passing for quantum chemistry”, ICML 2017.
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Spatiotemporal Graph Neural Networks

Message passing in action

h1,l

h2,l

h3,l

h4,l

e21
e31

e41

MSG21,l
MSG31,l

MSG41,l

Message

{ }

Aggregate

h1,l+1

Update
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Spatiotemporal Graph Neural Networks

Spatiotemporal message passing

Starting from the MP framework, we can define a general scheme for spatiotemporal
message-passing (STMP) networks:

hi,l+1
t = UPl

(
hi,l
≤t, AGGR

j∈Nt(i)

{
MSGl

(
hi,l
≤t,h

j,l
≤t, e

ji
≤t

)})
Rather than vectors, STMP blocks process sequences.

→ STMP blocks must be implemented with operators that work on sequences!

We will look at different implementations of STMP blocks in the following.

[4] A. Cini et al., “Graph Deep Learning for Time Series Forecasting: A Comprehensive Methodological Framework” 2023.
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Spatiotemporal Graph Neural Networks

A general recipe

We consider STGNNs can be expressed as a sequence of three operations:

hi,0
t−1 = ENCODER

(
xi
t−1,u

i
t−1,v

i
)
, (2)

H l+1
t−1 = STMPl

(
H l

≤t−1, E≤t−1

)
, l = 0, . . . , L− 1 (3)

x̂i
t:t+H = DECODER

(
hi,L
t−1,u

i
t:t+H

)
. (4)

Where:

• ENCODER( · ) is the encoding layer, e.g., implemented by an MLP.

• STMP is a stack of STMP layers.

• DECODER( · ) is the readout layer, e.g., implemented by an MLP.
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Spatiotemporal Graph Neural Networks

Framework overview

xi
t−W :t

xj
t−W :t

...

ENCODER

ENCODER

ui
t−W :t, v

i

uj
t−W :t, v

j

hi,0
t−W :t

hj,0
t−W :t

STMPL

STMPL

STMP1

STMP1

MP between time series

hi,L
t−1

hj,L
t−1

DECODER

DECODER

ui
t:t+H

uj
t:t+H

x̂i
t:t+H

x̂j
t:t+H

...
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Spatiotemporal Graph Neural Networks

Design paradigms for STGNNs

Depending on the implementation of the STMP blocks, we categorize STGNNs into:

• Time-and-Space (T&S)
Temporal and spatial processing cannot be factorized in two separate steps.

• Time-then-Space (TTS)
Embed each time series in a vector, which is then propagated over the graph.

• Space-then-Time (STT)
Propagate nodes features at first and then process the resulting time series.

xi
t−W :t ENCODER STMPL

STMP1
DECODER x̂i

t:t+H

21



Spatiotemporal Graph Neural Networks / Architectures

Time-and-Space

In T&S models, representations at every node and time step are the results of a joint temporal
and spatial encoding

H l+1
t−1 = STMPl

(
H l

≤t−1, E≤t−1

)
Several options exist.

• Integrate MP into neural operators for sequential data.
– Graph recurrent architectures, spatiotemporal convolutions, spatiotemporal attention, ...

• Use temporal operators to compute messages.
– Temporal graph convolutions, spatiotemporal cross-attention, ...

• Product graph representations.
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Spatiotemporal Graph Neural Networks / Architectures

Example 1: From Recurrent Neural Networks...

Consider a standard GRU [6] cell.

rit = σ
(
Θr

[
xi
t||hi

t−1

]
+ br

)
(5)

ui
t = σ

(
Θu

[
xi
t||hi

t−1

]
+ bu

)
(6)

cit = tanh
(
Θc

[
xi
t||rit ⊙ hi

t−1

]
+ bc

)
(7)

hi
t =

(
1− ui

t

)
⊙ cit + ui

t ⊙ hi
t−1 (8)

Time series can be processed independently for each node or as a single multivariate time
series.

[6] J. Chung et al., “Empirical evaluation of gated recurrent neural networks on sequence modeling” 2014.

23



Spatiotemporal Graph Neural Networks / Architectures

...to Graph Convolutional Recurrent Neural Networks

We can obtain a T&S model by implementing the gates of the GRU with MP blocks:

Zl
t = H l−1

t (9)

Rl
t = σ

(
MPl

r

([
Zl

t||H l
t−1

]
, Et

))
, (10)

Ol
t = σ

(
MPl

o

([
Zl

t||H l
t−1

]
, Et

))
, (11)

Cl
t = tanh

(
MPl

c

([
Zl

t||Rl
t ⊙H l

t−1

]
, Et

))
, (12)

H l
t = Ol

t ⊙H l
t−1 + (1−Ol

t)⊙Cl
t, (13)

These T&S models are known as graph convolutional recurrent neural networks (GCRNNs) [7].

[7] Y. Seo et al., “Structured sequence modeling with graph convolutional recurrent networks”, ICONIP 2018.
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Spatiotemporal Graph Neural Networks / Architectures

Popular GCRNNs

The first GCRNN has been introduced in [7], with MP blocks implemented as polynomial graph
convolutional filters.

GCRNNs have become popular in the traffic forecasting context with the Diffusion Convolutional
Recurrent Neural Network (DCRNN) architecture [8].

In DCRNN, MP is performed through bidirectional diffusion convolution:

H ′
t =

K∑
k=0

(
D−1

t,outAt

)k
HtΘ

(k)
1 +

(
D−1

t,inA
⊤
t

)k

HtΘ
(k)
2 (14)

[7] Y. Seo et al., “Structured sequence modeling with graph convolutional recurrent networks”, ICONIP 2018.
[8] Y. Li et al., “Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting”, ICLR 2018.
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Spatiotemporal Graph Neural Networks / Architectures

Example 2: Spatiotemporal convolutional networks (i)

A completely different approach is that of spatiotemporal convolutional networks (STCNs), that
alternate spatial and temporal convolutional filters:

• Compute intermediate representations by using a node-wise temporal convolutional layer:

zi,l
t−W :t = TCNl

(
hi,l−1
t−W :t

)
∀ i

where TCNl indicates a temporal convolutional network layer.

• Then, compute the updated representation by using a time-wise graph convolution:

H l
t = MPl

(
Zl

t, Et
)

∀ t

26



Spatiotemporal Graph Neural Networks / Architectures

Spatiotemporal convolutional networks (ii)

The first example of such architecture is the STGCN by Yu et al. [9].

The model is obtained by stacking STMP
blocks consisting of

• a (gated) temporal convolution;

• a polynomial graph convolution;

• a second (gated) temporal
convolution.

Courtesy of [9].

[9] B. Yu et al., “Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting”, IJCAI 2018.
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Spatiotemporal Graph Neural Networks / Architectures

Example 3: Temporal Graph Convolution

A more integrated approach instead consists of using temporal operators to compute messages.

For example, we can design STMP layers s.t.

hi,l
t−W :t = TCNl

1

(
hi,l−1
t−W :t, AGGR

j∈Nt(i)

{
TCNl

2

(
hi,l−1
t−W :t,h

j,l−1
t−W :t, e

ji
t−W :t

)})
.

Analogous models can be built by exploiting attention-based operators [10], [11].

[10] I. Marisca et al., “Learning to Reconstruct Missing Data from Spatiotemporal Graphs with Sparse Observations”, NeurIPS 2022.
[11] Z. Wu et al., “TraverseNet: Unifying Space and Time in Message Passing for Traffic Forecasting”, TNNLS 2022.

28



Spatiotemporal Graph Neural Networks / Architectures

Example 4: Product graph representations

Finally, an orthogonal option to those seen so far is to consider Gt−W :t as a single
spatiotemporal graph St.

Such product graph can be obtained by combining temporal and spatial graphs.

· · ·
t−W t− 2 t− 1

Temporal graph: Spatial graph:

The resulting graph can be processed by any MP neural network.

[12] M. Sabbaqi et al., “Graph-time convolutional neural networks: Architecture and theoretical analysis” 2022.
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Spatiotemporal Graph Neural Networks / Architectures

Building product graph representations

• Cartesian product
Spatial graphs are kept and each node is connected to itself in the previous time instant.

• Kronecker product
Each node is connected only to its neighbors in the previous time instant.

• ...
30



Spatiotemporal Graph Neural Networks / Architectures

Time-then-Space models

The general recipe for a TTS model consists in:

1. Embedding each node-level time series in a vector.
2. Propagating obtained encodings throughout the graph with a stack of MP layers.

1. hi,1
t = SEQENC

(
hi,0
≤t

)
2. H l+1

t = MPl
(
H l

t , Et
)

H0
≤t

SEQENC
SEQENC

SEQENC
SEQENC

(
H1

t ,A
)

MPL

MP2
MP1

HL
t

31



Spatiotemporal Graph Neural Networks / Architectures

Full TTS model

SEQENC
SEQENC

SEQENC
SEQENC

MPL

MP2
MP1

STMP

ENCODER Ut−W :t

Xt−W :t E

DECODERUt:t+H

X̂t:t+H
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Spatiotemporal Graph Neural Networks / Architectures

Pros & Cons of TTS models

Pros: ⌣ Easy to implement and computationally efficient.

⌣ We can reuse operators we already know.

Cons: ⌢ The 2-step encoding might introduce information bottlenecks.

⌢ Accounting for changes in topology and dynamic edge attributes can be
more problematic.
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Spatiotemporal Graph Neural Networks / Architectures

Space-then-Time

In STT approaches the two processing steps of TTS models are inverted:

1. Observations are propagated among nodes w.r.t. each time step using a stack of MP layers.
2. Each sequence of representations is processed by a sequence encoder.

1. Hi,l
t = MPl

(
Hi,l−1

t , Et
)

2. hi,L
t = SEQENC

(
hi,L−1
t−W :t

)

HL−1
t−W :t

SEQENC
SEQENC

SEQENC
SEQENC

HL
t

MPL

MP2
MP1

Hi,0
t−W :t, Et−W :t

⌢ They do not have the same computational advantages of TTS models.
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Spatiotemporal Graph Neural Networks / Architectures

Full STT model

SEQENC
SEQENC

SEQENC
SEQENC

MPL

MP2
MP1

STMP

ENCODER Ut−W :t

Xt−W :t E

DECODERUt:t+H

X̂t:t+H
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Global and local models

Global vs local

A forecasting model is called global if its parameters are fitted to a group of time series
→ either univariate or multivariate.

Conversely, local models are specific to a single (possibly multivariate) time series.

xi
t−W :t

xj
t−W :t

FG

FG

x̂i
t:t+H

x̂j
t:t+H

Global model

xi
t−W :t

xj
t−W :t

fi

fj

x̂i
t:t+H

x̂j
t:t+H

Local models

A global model does not have any time-series-specific (local) parameters.

[13] P. Montero-Manso et al., “Principles and algorithms for forecasting groups of time series: Locality and globality”, IJF 2021.
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Global and local models

Trade-offs

Global models

• Just a single model needs to be trained
and maintained.

• Larger amount of data available for
training.

• Can be used in inductive learning scenarios
(on unseen target time series).

• Theoretically, it can be as expressive as
fitting a set of local models to each time
series.

Local models

• Can more easily model time-series-specific
dynamics.

• Often require shorter input windows.

• No problem in dealing with
heterogeneous/asynchronous time series.
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Global and local models

Globality and locality in STGNNs

STGNNs are typically global models: they do not rely upon node-specific parameters.

→ But they condition representations on each node’s neighborhood, thus accounting for
spatial dependencies.

Nonetheless, entirely global models might struggle to model local effects1 and might require:

⌢ impractically long observation windows;

⌢ large model capacity.

� We can use hybrid global-local STGNNs with specialized local components.

1 Dynamics proper of each time series in the collection.
[14] A. Cini et al., “Taming Local Effects in Graph-based Spatiotemporal Forecasting”, To appear in NeurIPS 2023.
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Global and local models

Global-local STGNNs (Example 1)

A simple approach consists of combining a global model and a (simpler) local one:

xi
t−W :t

FG

fi

x̂
i,(1)
t:t+H

x̂
i,(2)
t:t+H

+ x̂i
t:t+H

...

xj
t−W :t

FG

fj

x̂
j,(1)
t:t+H

x̂
j,(2)
t:t+H

+ x̂j
t:t+H

...
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Global and local models

Global-local STGNNs (Example 2)

Another possibility is to use different weights for each time series at the encoding (ωi
enc) and

decoding (ωi
dec) steps:

hi,0
t = ENCODERi

(
xi
t−1,u

i
t−1,v

i;ωi
enc

)
x̂i
t:t+H = DECODERi

(
hi,L
t ,ut:t+H ;ωi

dec

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xi
t−W :t ENCODERi

ui
t−W :t, v

i

hi,0
t−W :t

STMPL

STMP1
hi,L
t−1 DECODERi

ui
t:t+H

ωi
enc ωi

dec

x̂i
t:t+H

40



Global and local models

Global-local STGNNs (Example 2)

xi
t−W :t

xj
t−W :t

...

ENCODER

ENCODER

ui
t−W :t, v

i

uj
t−W :t, v

j

hi,0
t−W :t

hj,0
t−W :t

STMPL

STMPL

STMP1

STMP1

MP between time series

hi,L
t−1

hj,L
t−1

DECODER

DECODER

ui
t:t+H

uj
t:t+H

ωi
enc ωi

dec

ωj
enc ωj

dec

x̂i
t:t+H

x̂j
t:t+H

...
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Global and local models

Pros & Cons of global-local STGNNs

How to balance between the global and local modeling paradigms is problem-dependent.

Introducing local components specific to each time series in a global STGNN has several effects.

⌣ Node-level effects are captured more efficiently than by fully global models.

⌣ Forecasting accuracy on the task is usually higher empirically.

⌢ The model’s inductive capabilities are compromised (hard to handle unseen time series).

⌢ The number of learnable parameters can be much larger compared to fully global models.

W We can mitigate these two drawbacks by associating each node with a learnable embedding.
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Global and local models

Learnable node embeddings

Node embeddings are a table of learnable parameters
Q ∈ RN×dq associated with each node.

They can be fed into modules of a global STGNN and
learned end-to-end.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example: node embeddings can be used to condition the encoding and decoding steps:

hi,0
t = ENCODER

(
xi
t−1,u

i
t−1,v

i, qi
)

x̂i
t:t+H = DECODER

(
hi,L
t ,ui

t:t+H , qi
)

Note: all the weights of the ENCODER and DECODERmodules can be shared among all the nodes.

[14] A. Cini et al., “Taming Local Effects in Graph-based Spatiotemporal Forecasting”, To appear in NeurIPS 2023.
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Global and local models

Node embeddings in action

xi
t−W :t

xj
t−W :t

...

ENCODER

ENCODER

ui
t−W :t, v

i, qi

uj
t−W :t, v

j , qj

hi,0
t−W :t

hj,0
t−W :t

STMPL

STMPL

STMP1

STMP1

MP between time series

hi,L
t−1

hj,L
t−1

DECODER

DECODER

ui
t:t+H , qi

uj
t:t+H , qj

x̂i
t:t+H

x̂j
t:t+H

...
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Global and local models

Advantages of node embeddings

Using node embeddings to make an STGNN global-local allows us to:

1. Amortize the cost of specializing the model to each time series;
– A single dq-dimensional vector for each node is added to the model’s parameters;
– The same vector can be used in multiple components of the architecture.

2. Transfer the learned model to a different set of time series V ′ more easily.
– Only |V ′|dq parameters need to be tuned, while the shared components are fixed;
– The embedding space can be regularized to better fit embeddings of new nodes [14].

[14] A. Cini et al., “Taming Local Effects in Graph-based Spatiotemporal Forecasting”, To appear in NeurIPS 2023.
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Global and local models

Example: global-local TTS

As an example, one can build a global-local TTS model by simply exploiting node embeddings
and global RNN and MP layers as

hi,0
t = ENCODER

(
xi
t−1,u

i
t−1,v

i, qi
)
,

hi,1
t = RNN

(
hi,0
≤t

)
,

H l+1
t = MPl

(
H l

<t−1, E≤t−1

)
, l = 1, . . . , L− 1

x̂i
t:t+H = DECODER

(
hi,L
t−1,u

i
t:t+H ,vi, qi

)
.
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Global and local models

Some empirical results

Models GPVAR-Global (MAE) GPVAR-Local (MAE)

Local
FC-RNN .4393±.0024 .5978±.0149

Local RNNs .4047±.0001 .4610±.0003

Global
RNN .3999±.0000 .5440±.0003

RNN+MP .3193±.0000 .3587± .0049

Global-local RNN .3991±.0001 .4612±.0003

(w/ Emb.) RNN+MP .3194±.0001 .3199±.0001

Optimal model .3192 .3192

• Global models can fall short in certain scenarios.

• Local multivariate models can easily overfit.

• Global-local models can strike a good compromise.

47



Model quality assessment



Model quality assessment

Questions to answer

Consider a predictor F trained to solve a time-series forecasting problem.

1. Is the predictor optimal for the problem at hand?

2. Where does the predictor appear sub-optimal?

3. How can we improve the predictor?

Remark: Multiple optimality criteria can be considered.

W Relational inductive biases can help us here too.
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Model quality assessment

Performance at task

Consider predictors Fa,Fb from a set F of models and performance metric M (e.g., MAE, MSE).

• we consider Fa better than Fb if M(Fa) is statistically better than M(Fb).

• we consider Fa optimal if there is no Fb ∈ F better than Fa.

Can we further improve over the best model so far Fa?

→ Either we find a new model F∗ better than Fa

→ or we need prior knowledge about the modeled system.

Model M

Fa 0.145±0.002

Fb 0.176±0.005

...
Fn 0.158±0.004

F∗ 0.139±0.001
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Model quality assessment

Residual correlation analysis

Studying the correlation between prediction residuals rit
.
= xi

t:t+H − x̂i
t:t+H allows for testing

model optimality.

If residuals are dependent
=⇒ there is information that the model hasn’t captured

=⇒ model predictions can be improved.

Serial correlation
Correlation between residuals at differ-
ent time steps.

Spatial correlation

Correlation between residuals at differ-
ent graph nodes.

Most of the research focused on either serial correlation [15]–[17] or spatial correlation [18], [19].
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Model quality assessment

Statistical tests for residual correlation

Whiteness test

H0 : residuals are uncorrelated H1 : some residuals correlate

Define a test statistic C({rit}) = C(F , {xi
t}) and a threshold γ such that

If |C({rit})| > γ =⇒ reject H0.

Remarks: Residual correlation analysis
⌣ Is independent of specific performance measures.
⌢ Does not quantify how much a model can improve w.r.t. a specific performance metric.
⌣ Does not rely on comparisons with other models.
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Model quality assessment

AZ-Whiteness test: a spatio-temporal test

The test is defined by statistic

C({r}) =
∑
t

∑
(i,j)∈Et

wijt sgn(⟨rit, rjt ⟩)︸ ︷︷ ︸
spatial edge

+
∑
t

∑
i

wit sgn(⟨rit, rit+1⟩)︸ ︷︷ ︸
temporal edge

• distribution-free and residuals can be non-identically distributed.
• computation is linear in the number of edges and time steps.

[20] D. Zambon et al., “AZ-whiteness Test: A Test for Signal Uncorrelation on Spatio-Temporal Graphs”, NeurIPS 2022.
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Model quality assessment

Where can we improve?

Analyzing the AZ-whiteness test statistic computed on subgraphs of the spatio-temporal graph
allows for discovering insightful correlation patterns.

Spatial (or temporal) edges Edges related to a node

Edges related to a time step Edges related to a node

[21] D. Zambon et al., “Where and How to Improve Graph-based Spatio-temporal Predictors” 2023.
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Challenges



Challenges

Challenges

• Latent graph learning
What to do when the underlying graph is not known?

• Learning in non-stationary environments
What to do when the environment changes?

• Scalability
How to deal with large collections of time series?

• Dealing with missing data
How to deal with missing observations within the time series?
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Latent graph learning

Learning and adjacency matrix

⌢ Relational information is not always available
⌢ or might be ineffective in capturing spatial dynamics.

⌣ Relational architectural biases can nonetheless be exploited
→ extract a graph from the time series or node attributes

X≤t

Graph extraction

Ã

• It can be interpreted as regularizing a spatial attention operator.

[22] A. Cini et al., “Sparse graph learning from spatiotemporal time series”, JMLR 2023. 55



Latent graph learning

Time-series similarities

Probably, the simplest approach to extract a graph from the time series
is by computing time series similarity scores.

• Pearson correlation

• Correntropy

• Granger causality

• Kernels for time series

• . . .

→ Thresholding might be necessary to obtain binary and sparse graphs.
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Latent graph learning

Latent graph learning

An integrated approach: learn the relations end-to-end with the downstream task

• as a function of the input data,
• as trainable parameters of the model,
• or both.

This problem is known as latent graph learning (or latent graph inference).

Two different approaches:

1. learning directly an adjacency matrix Ã ∈ RN×N ;
2. learning a probability distribution over graphs pΦ generating Ã.

. One key challenge is keeping both Ã and the subsequent computations sparse.
→ challenging with gradient-based optimization.
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Latent graph learning

Direct approach

A direct approach consists in learning Ã as function ξ( · ) of edge
scores Φ ∈ RN×N as

Ã = ξ (Φ)

Edge scores Φ

→ can be a table of learnable model parameters,

→ obtained as a function of the inputs and/or other parameters.

Function ξ( · ) is a nonlinear activation

→ it can be exploited to make Ã sparse.
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Latent graph learning

Direct approach: factorization methods

Many of the methods directly learning Ã, learn a factorization of the former to amortize the cost
of the inference:

Ã = ξ (Φ) Φ = ZsZ
⊤
t

with

• Zs ∈ RN×d source node embeddings

• Zt ∈ RN×d target node embeddings

Zs and Zt can be learned as tables of
(local) parameters or as a function of
the input window.

[23] Z. Wu et al., “Graph wavenet for deep spatial-temporal graph modeling”, IJCAI 2019.
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Latent graph learning

Pro & Cons of the direct approach

⌣ Easy to implement.

⌣ Many possible parametrizations.

⌣ Edge scores are usually easy to learn end-to-end.

⌢ It often results in dense computations with O(N2) complexity.

⌢ Sparsifying Ã results in sparse gradients.

⌢ Encoding prior structural information requires smart parametrizations.
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Latent graph learning

Probabilistic methods

In this context, probabilistic methods aim at learning a parametric distribution pΦ for Ã by
minimizing

L(Φ) = EÂ∼pΦ

[
ℓ
(
X̂t:t+H ,Xt:t+H

)]
. (15)

• Again, we can factorize Φ and make pΦ input dependent, e.g.,

Φ = ξ
(
ZsZ

⊤
t

)
Ã ∼ pΦ (A|X<t,U<t,V )

• Different parametrizations of pΦ allow for embedding sparsity priors on the sampled
graphs [22].

. Gradient-based optimization requires ∇ΦL(Φ)
→ it can be challenging and computationally expensive.

[22] A. Cini et al., “Sparse graph learning from spatiotemporal time series”, JMLR 2023.
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Latent graph learning

Monte Carlo gradient estimators

� One approach is to reparametrize Ã ∼ pΦ(A) as: Ã = g (Φ, ε) , ε ∼ p(ε)

decoupling parameters Φ from the random component ε: ∇ΦL(Φ) = Eε

[
∇Φℓ(X̂,X)

]
.

⌣ Practical and easy to implement,
⌢ rely on continuous relaxations and make subsequent computations scale with O(N2).

� Conversely, score-function (SF) gradient estimators rely on the relation

∇ΦEpΦ

[
ℓ(X̂,X)

]
= EpΦ

[
ℓ(X̂,X)∇Φ log pΦ

]
⌢ suffer from high variance (use variance reduction techniques),
⌣ allow to keep computations sparse.

→ we can use Monte Carlo estimator.
[24] T. Kipf et al., “Neural relational inference for interacting systems”, ICML 2018.
[22] A. Cini et al., “Sparse graph learning from spatiotemporal time series”, JMLR 2023.
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Learning in Non-Stationary Environments

Inductive learning

In real-world applications, one often needs to

• operate under changes in the network connectivity

• make predictions for newly added nodes

• transfer the model to different sensor networks (collections of
time series)

Useful in several tasks, like, forecasting, missing data imputation, and virtual sensing.

. Performance can easily degrade if the data distribution of target nodes
• deviates from that at training nodes
• changes over time.

[25] G. Ditzler et al., “Learning in Nonstationary Environments: A Survey”, IEEE CIM 2015.
[14] A. Cini et al., “Taming Local Effects in Graph-based Spatiotemporal Forecasting”, To appear in NeurIPS 2023.
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Learning in Non-Stationary Environments

Transferability of STGNNs
Global STGNNs are inductive and can directly be used in the above
settings, provided that the training and target data are similar enough.

• MP operates on generic neighborhoods
• MP parameters are shared across nodes

Otherwise, STGNNs need to be adjusted
• fine-tuning (a subset of) the weights of the model on the new data
• exploiting transfer learning strategies

Enc STMP Dec

. Global-local STGNNs reduce the cost of transfer learning
• sharing most of the parameters and finetuning node-specific parameters only
• node embeddings can be regularized to facilitate the learning further.

[26] G. Panagopoulos et al., “Transfer graph neural networks for pandemic forecasting”, AAAI 2021.
[27] T. Mallick et al., “Transfer learning with graph neural networks for short-term highway traffic forecasting”, ICPR 2021.
[14] A. Cini et al., “Taming Local Effects in Graph-based Spatiotemporal Forecasting”, To appear in NeurIPS 2023.
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Scalability

The scalability feature

⌣ Graph-based processing allows us to
learn a single model...

⌣ ...able to deal with a large collection of
time series...

⌣ ...while accounting for the most relevant
relational information.
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Scalability

The scalability issue

Spatiotemporal data span – as the name suggests – two dimensions:

• the spatial dimension, corresponding to the number of time series (sensors).

• the time dimension, corresponding to the number of time steps (number of observations
acquired per sensor).

In the real world, dealing with thousands of sensors acquiring data at high sampling rates is
quite common (e.g., smart cities).

⌢ A large amount of data needs to be processed at once.

⌢ In particular, to account for long-range spatiotemporal dependencies.
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Scalability

Computational complexity of STGNNs

The computational complexity of T&S models is given by:

• node-wise temporal processing – O
(
WN

)
;

• L MP layers for each time step – O
(
WL|Et|

)
.

→ O
(
W

(
N + L|Et|

))
A first step toward improving scalability is represented by TTS models, which perform:

• node-wise temporal processing – O
(
WN

)
;

• L MP layers at the last time step – O
(
L|Et|

)
.

→ O
(
WN + L|Et|

)
STT models, instead, do not have computational advantages over T&S models.
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Scalability

Graph subsampling

Computations can be reduced by training on subgraphs of the full
network, e.g., by

• sampling the K-th order neighborhood of a subset of nodes;

• rewiring the graph to reduce the total number of edges.

Mostly adapted from methods developed in static graph processing (e.g., [28], [29]).

⌢ Subsampling might break long-range spatiotemporal dependencies.

⌢ The learning signal may be noisy.

[28] W. Hamilton et al., “Inductive representation learning on large graphs”, NeurIPS 2017.
[29] Y. Rong et al., “DropEdge: Towards Deep Graph Convolutional Networks on Node Classification”, ICLR 2020.
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Scalability

Pre-computation

Pre-processing methods (e.g., [30]) enable scalability to large graphs by:

• precomputing a representation for each node’s neighborhood ahead of training;

• processing the obtained node representations as if they were i.i.d. samples.

An extension to spatiotemporal data is given by SGP [31], which acts in 2 steps:

1. obtain a temporal encoding at each time step with a deep echo state network2;

2. propagate such encodings through the graph using powers of a graph shift operator.

[30] F. Frasca et al., “SIGN: Scalable inception graph neural networks” 2020.
[31] A. Cini et al., “Scalable Spatiotemporal Graph Neural Networks”, AAAI 2023.
2 A randomized recurrent neural networks
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Scalability

SGP: Scalable Graph Predictor [31]

Extracted representations can be sampled uniformly across time and space during training.

C
O
N
C
AT
EN
AT
E

Echo State Network

sp
ac

e

time

. . .

. . .

. . .

M
LP

⌣ The cost of a training step is independent of W,N and |Et|.
⌣ Performance matches state of the art.
⌢ More storage space is required, as the number of extracted features is much higher than dx.
⌢ More reliant on hyperparameter selection than end-to-end approaches.

[31] A. Cini et al., “Scalable Spatiotemporal Graph Neural Networks”, AAAI 2023.
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Dealing with missing data

The problem of missing data

So far, we assumed to deal with complete sequences, i.e., to have valid observations associated
with each node (sensor) and time step.

However, time series collected by real-world sensor networks often have missing data, due to:

• faults, of either transient or permanent nature;

• asynchronicity among the time series;

• communication errors...

Most forecasting methods operate on complete sequences.
→ We need a way to impute, i.e., reconstruct, missing data.
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Dealing with missing data

Time series imputation (i)

The problem of reconstructing missing values in a sequence of data is often referred to as time
series imputation (TSI).

time

Xt:t+T

TSI Method

time

X̂t:t+T
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Dealing with missing data

Time series imputation (ii)

We use a mask mi
t ∈ {0,1} to distinguish between missing (0) and valid (1) observations.

timexi
t:t+T timemi

t:t+T

Time series imputation

Given a window of T ≥ 1 observations X<T with missing values, the time series imputa-
tion problem consists in estimating the missing observations in the sequence

xi
t ∼ p(xi

t | X<T ) ∀ i, t such that mi
t = 0

with X<T = {xi
t | xi

t ∈ X<T and mi
t = 1} being the observed set.
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Dealing with missing data

Deep learning for TSI

Besides standard statistical methods, deep learning approaches have become a popular
alternative, in particular, autoregressive models (e.g., RNNs).

0

MUX
01

1 0

RNN RNNRNN RNN RNN

⌣ Effective in exploiting past (and future, with bidirectional models) node observations...
⌢ ...but struggle in capturing nonlinear space-time dependencies.
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Dealing with missing data

Time series imputation + relational inductive biases

Again, we can use the available relational information to condition the model, i.e.,

xi
t ∼ p

(
xi
t | X<T ,A

)
As done for the forecasting problem, we can use STGNNs to address the imputation task.

time

Xt:t+T , A

TSI STGNN

time

X̂t:t+T
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Dealing with missing data

Graph Recurrent Imputation Network

Cini et al. [32] propose a GCRNN that builds upon the autoregressive approach for imputation:

• A (graph-based) RNN (i.e., a GCRNN cell) is used to encode the sequence of only valid
observations:

Zt = STMP (H<t ⊙M<t, E<t) .

• An additional MP layer is used as spatial decoder, to account for concurrent observations
at neighbors:

x̂i
t = DEC

(
zi
t, AGGR

j∈N (i)\{i}

{
MSG(zj

t ,x
j
t )
})

.

[32] A. Cini et al., “Filling the G_ap_s: Multivariate Time Series Imputation by Graph Neural Networks”, ICLR 2022.
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Dealing with missing data

Forecasting from Partial Observations

A more direct approach to the problem is to avoid the reconstruction step and consider
forecasting architecture that can directly deal with irregular observations.

The mechanisms used in imputation models
can be adapted to build forecasting
architectures.

⌣ Such models can be used to jointly impute
missing observations and forecast future
values.
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Dealing with missing data

Beyond imputation

Graph-based imputation methods estimate missing values at an existing node by using
available information at neighboring nodes.

Question:

Can we use the same approach to infer
observations of virtual sensors, i.e., fictitious
nodes not associated with an existing sensor?

time

?
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Dealing with missing data

Virtual sensing

� Simulate the presence of a sensor by adding a node with no data, then let the model infer the
corresponding time series.

Clearly, several assumptions are needed

• high degree of homogeneity of sensors,

• capability to reconstruct from observations
at neighboring sensors,

• and many more...

Two virtual sensors for air quality. (from [32])
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[10] I. Marisca et al., “Learning to Reconstruct Missing Data from Spatiotemporal Graphs with Sparse Observations”, NeurIPS 2022.
[32] A. Cini et al., “Filling the G_ap_s: Multivariate Time Series Imputation by Graph Neural Networks”, ICLR 2022.
[33] Y. Wu et al., “Inductive Graph Neural Networks for Spatiotemporal Kriging”, AAAI 2021.
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Coding Spatiotemporal GNNs



Coding Spatiotemporal GNNs

tsl: PyTorch Spatiotemporal Library

tsl (Torch Spatiotemporal) is a python library built upon PyTorch and
PyG to accelerate research on neural spatiotemporal data processing
methods, with a focus on Graph Neural Networks.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Notebook
Spatiotemporal Graph Neural Networks with tsl

Open in ColabOpen in Colab
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Conclusions

Some Takeaways

DL for time series
+

DL on graphs
=⇒ Spatiotemporal Graph

Neural Networks

⌣ Relational inductive biases allow for exploiting dependencies among the time series
⌣ while sharing most of the model parameters
⌣ Global-local STGNNs are a safe choice in non-inductive settings

Challenges

ä latent graph learning

m missing data imputation

2 inductive learning

ó scalability
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